GATE

WORKDOOK 2026

Detailed Explanations of Try Yourself *Questions*

Electronics EngineeringComputer Organization

Basics on CPU Registers and Memory

Detailed Explanationof

Try Yourself Questions

T1 : Solution

(b)

T1 : Solution

(a)

T1: Solution

(d)

Machine Instructions and Addressing Modes

Detailed Explanation of Try Yourself Questions

T1: Solution

(10)

As per the program and instruction length

Instruction 1 — 2 Words
Instruction 2 — 1 Word
Instruction 3 — 1 Word
Instruction 4 — 1 Word
Instruction 5 — 1 Word
Instruction 6 — 1 Word
Instruction 7 — 2 Words
Instruction 8 — 1 Word
Total 10 Words

Irrespective of word length, if it is given as word addressable, then the entire memory location is taken as 1 word.

T2: Solution

(c)

Given as Byte addressable, it means every byte of memory word has one address.

Program starts at memory location 1000, hence

When interrupt occurs at instruction I_5 , the sequence of steps taken by CPU are

1. 'PC' content/next instruction address into stack memory i.e., address of $I_6 \Rightarrow 1024$.

T3: Solution

(d)

As per the sequence of events that take place when 'CALL' instruction is executed.

5FA0H: CALL Address Subroutine → 2 Words (So 4 bytes) 1 W = 2 Bytes

When CALL is executed.

Step 1: [PC] → Stack Memory i.e., 2 B

 \therefore SP \rightarrow Will be incremented by 2.

i.e., [SP] ← 0170H

Step 2: [PSW] → Stack Memory i.e., 2B

 \therefore SP \rightarrow Will be again incremented by 2

:: [SP] ← 0172H

T4: Solution

(a)

T5: Solution

(b)

 $f_{\rm clk}$ = 1 GHz (given); Given, 4 cycles \rightarrow Memory Reference, 2 cycles \rightarrow Arithmetic computation

Addressing Mode)	Number of Cycles					
1. Register		0 (as per data)					
2. Immediate		0 (as per data)					
3. Direct		1 Memory cycle					
4. Memory Indirect		2 Memory cycle + 1 Arithmetic computation					
5. Indexed		1 Arithmetic computation + 1 Memory cycle					
6. Auto indexed		1 Arithmetic computation + 1 Memory cycle					

Average CPI =
$$\sum_{i=1}^{m} \frac{IC_i}{IC} \times CPI_i \rightarrow Cycles \text{ per } i^{th} \text{ instruction}$$

$$\frac{IC_i}{IC}$$
 \Rightarrow Fraction of occurrence of i^{th} instruction

$$\Rightarrow$$
 $[0.2 \times 0] + [0.2 \times 0] + 0.2[1 \times 4] + 0.1[2 \times 4] + 0.17[(1 \times 4) + (1 \times 2)] + 0.13[(1 \times 4) + (1 \times 2)]$

$$\Rightarrow$$
 0 + 0 + 0.8 + 0.8 + 1.02 + 0.78

$$\Rightarrow$$
 3.4 cycles

Average Execution Time per instrution = $3.4 \times \frac{1}{1 \times 10^9}$

(or) here average fetch cycles for operands = 3.4 ns

For 1 instruction
$$= 3.4 \text{ ns}$$

For 1 second =
$$\frac{1}{3.4ns}$$

= 0.294117 × 10⁹
= 294.11 × 10⁶
= 294.11 Million words/sec

T6: Solution

Given Instruction
$$\rightarrow$$
 ADD@300, 30(R 3) operand-1 operand-2

@ 300 → Indicates, Memory Indirect addressing mode

 $30(R3) \rightarrow Index addressing mode$

Operand-1; Effective address (E.A) = M[300]

Operand-2; EA = [R3] + 30

Memory Indirect addressing mode, Index addressing mode

T7: Solution

(d)

$$R0 \leftarrow #35 \text{ H}; R0$$

$$\boxed{35\text{H}}$$

$$R1 \leftarrow \#FF + H; R1$$

$$FFH$$

$$R1 \leftarrow [R0] \boxdot [R1]$$

$$[R1] = FFH$$

T8: Solution

(a)

ALU, Data-path and Control Unit

Detailed Explanation

of

Try Yourself Questions

T1: Solution

(c)

The machine here can support both horizontal and vertical μ -instructions.

Vertical \rightarrow none/one of 3 μ -instructions

 \rightarrow 2 bits are required for encoded form of 3 instructions.

Horizontal \rightarrow 6 μ -operations \rightarrow 6 bits

Total \rightarrow 2 + 6 \rightarrow 8 bits

T2: Solution

∴.

(c)

Vertical is most flexible, then horizontal type least is hardwired as no new instruction can be added and whose design should be done from the beginning.

T3: Solution

(a, c)

As per data,

3 control signals $\rightarrow S_0$, S_1 and S_3

3 Instructions $\rightarrow I_1$, I_2 and I_3

 3μ -operations $\rightarrow T_1$, T_2 and T_3

Expressions for S_0 and S_1 could be

$$S_0 = T_1[I_1 + I_2 + I_3] + T_2[0] + T_3[I_1]$$

$$= T_1 + T_3 I_1$$

$$S_1 = T_1[I_1 + I_3] + T_2[I_2] + T_3[I_2]$$

T4: Solution

8

(b)

As pre data: Total instructions = 256

No. of μ -operations/instructions = 8

Total memory locations = $256 \times 8 = (2048)_{10}$

Address lines/bits = 11 bits

No. of flags = 16 \therefore No. bits for coding flags = 4

No. of signals = 48 i.e., 48 bits in μ -instruction.

:. Total no. of bits in one μ -instruction = (48 + 4 + 11) bits

T5: Solution

(10)

25 control signals → Given

Minimum code bits for $25 \rightarrow 5$ bits

$$2^n = 25$$

n = 5 at least

 \Rightarrow

T6: Solution

(126)

5 Groups of mutually exclusive signals i.e., both Horizontal and Vertical μ -programming is supported but one at a time.

Instruction Pipelining

Detailed Explanation of

Try Yourself Questions

T1: Solution

(b)

Design-1: D1

K = 5 stages

N = 100

Non-uniform time delay stages

 \therefore $t_p = \text{Max of (3ns, 2ns, 4ns, 2ns and 3ns)}$

= 4 ns

Total time 1 = $(K + N - 1)t_p$

= (5 + 100 - 1) 4ns

 $= 416 \, \text{ns}$

Time saved = 416 ns - 214 ns = 202 ns

Design-2: D2

K = 8

N = 100

 $t_p = 2 \text{ ns (given)}$

Total time 2

 $= (K + N - 1)t_{D}$

= (8 + 100 - 1)2ns

 $= 107 \times 2$ ns

 $= 214 \, \text{ns}$

T2: Solution

(13)

K = 4 stages, assume them as Fetch, Decode, Execute and Memory Access, i.e., F, Dec, Ex, M.A.

Based on the given data the overlapped execution would be

Clock	1	2	3	4	5	6	7	8	9	10	11	12	13)	14	15	16	
I_1	F	D	D	Ex	M.A	M.A											
I_2		F	F	D	Ex	Ex	M.A										
I_3				F	D		Ex	Ex	M.A								
I_4					F	F	D		Ex	Ex	M.A						
I_1							F		D	D	Ex	M.A	M.A				
	I ₁ Completes Execution																

 I_1 completes execution in i = 2 @ 13 clock.

T3: Solution

(c)

T4: Solution

(c)

T5: Solution

(33.28)

T6: Solution

(b)

T7: Solution

(1.4)