ESE

WORKDOOK 2026

Detailed Explanations of Try Yourself *Questions*

Electronics Engineering Microprocessors

1

Basics of Intel 8085, Intel 8086 and other Microprocessors

T1. (b)

In 8085 lower order address bus and data bus are multiplexed to reduce the no. of pins and demultiplexing is done using ALE pin which is when 1 then lower order byte work as address and when 0 work as data.

T2. (b)

The first machine cycle of any instruction is opcode fetch cycle.

- T3. (c)
- **T4.** (d)

STA 16-bit address → Store the content of accumulator at 16-bit address.

T5. (b)

Ready → 0 ; microprocessor with for I/O 1 ; indicates I/O is ready for communication

2

8085 Programming

T1. Sol.

(i)
$$AX$$
 20 H \longrightarrow SP \longrightarrow 20 H

(ii)
$$BX$$
 34 H \longrightarrow SP \longrightarrow 34 H 20 H

(iii)
$$34 H + 34 H = 68 H$$

Contents of registers.

$$AX = 68 H$$

$$BX = 34 H$$

$$CX = 20 H$$

T2. Sol.

Infinite.

T3. (c)

RST 6.5 and RST 5.5 both are Maskable interrupt.

address location of RST 5.5

$$=(8 \times 5.5)_{10} = (44)_{10} = (2C)_{16}$$

 $XTHL \rightarrow is a instruction which exchanges top of stack with HL pair.$

SID is signal used for serial input data.

T4. (b)

AC ⇒ Auxiliary carry flags status is used only in DAA {DAS}

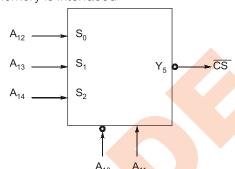
Decimal adjust after additions {subtraction} All conditional jumps are short jumps z = 1 if data is same when compared.

T5. (a)

SI, DI i.e. source index and destination index registers are used for extra segment (or) alternate date segment.

3

8085 Microprocessor Interfacing and Applications


T1. Sol.

Total Memory of $8085 = 2^{16}$ bytes Size of one page = $256 = 2^{8}$ bytes

Number of pages = $\frac{2^{16}}{2^8}$ = 2^8 = 256 pages

T2. (d)

1 KB memory is interfaced

A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉ A ₀
Х	1	0	1	1	0	00
Х	1	0	1	1	0	11

If $A_{15} = 0 \Rightarrow 5800 \text{ H to } 5 \text{ BFFH}$ If $A_{15} = 1$, $\Rightarrow D800 \text{H to DBFFH}$

T3. Sol.

8085 is an 8 bit microprocessor with 8 bit address lines for I/O devices. So, in I/O mapped I/O mode, 8085 can have at most $2^8 = 256$ input devices and 256 output devices. Their addresses will lie in the range from 00000000 to 111111111.

T4. (d)

Find whether I/O is I/O mapped I/O or memory mappped I/O.

As per the question IO/\overline{M} signal is connected to \overline{G}_{2A} i.e. $IO/\overline{M}=0$, hence I/O is allocated address as memory mapped I/O i.e. it has 16-bit address. As it is given in question to access data form I/O, it is an I/P device so instruction must be 'LDA', hence the answer is LDA F8F8H.

By considering the lines A_{15} to A_0 , the address F8F8H can be obtained.

T5. Sol.

As per the memory map given

F400H – F7FFH, the decoder input lines values can be found i.e. A_{12} , A_{11} and A_{10} .

 $\therefore A_{12} A_{11} A_0$ are 10 1 is 5.

Decoding logic of decoder:

ı			
С	В	Α	Output
A ₁₂	A ₁₁	A_0	
0	0	0	Y_0
0	0	1	Y ₀ Y ₁
	:		
 - 1	0	1	Y ₅
1	1	0	Y ₅ Y ₆ Y ₇
1	1	1	Y ₇

 \therefore Y_5 output is connected to the chip select line of memory.

