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Signals and Systems

Introduction to Signals and Systems

This book starts with basic and extensive chapter on signals in which continuous
and discrete-time case are discussed in parallel. A variety of basic signals, functions
with their mathematical description, representation and properties are incorporated.
A substantial amount of examples are given for quick sketching of functions. A
chapter on systems is discussed separately which deals with classification of
systems, both in continuous and discrete domain and more emphasize is given to
LTI systems and analytical as well as graphical approach is used to understand
convolution operation. These two chapters makes backbone of the subject.

Further we shall proceed to transform calculus which is important tool of signal
processing. A logical and comprehensive approach is used in sequence of chapters.
The continuous time Fourier series which is base to the Fourier transform, deals
with periodic signal representation in terms of linear complex exponential, is
discussed.

The Fourier transform is discussed before Laplace transform. The sampling, a
bridge between continuous-time and discrete-time, is discussed to understand
discrete-time domain.

A major emphasis is given on proof of the properties so that students can understand
and analyzes fundamental easily.

A point wise recapitation of all the important points and results in every chapter
proves helpfull to students in summing up essential developments in the chapter
which is an integral part of any competitive examination.




CHAPTER

Introduction to Signals

Introduction
A signal is any quantity having information associated with it. It may also be defined as a function of one
or more independent variables which contain some
information.
A function defines a relationship between two sets i.e.
one is domain and another is range.

It means function defines mapping from one set to another
and similarly a signal may also be defined as mapping Domain Range

from one set (domain) to another (range). e.g. Figure-1.1
gure-1.

o A speech signal would be represented by
acoustic pressure as a function of time.

° A monochromatic picture would be represented by brightness as a function of two spatial variable.

° A voltage signal is defined by a voltage across two points varying as function of time.

o A video signal, in which color and intensity as a function of 2-dimensional space (2D) and
1-dimensional time (i.e. hybrid variables).

Note: In this course of “signals and systems”, we shall focus on signals having only one variable and will
consider ‘time’ as independent variable.

1.1 Elementary Signals

These signals serve as basic building blocks for construction of somewhat more complex signals. The
list of elementary signals mainly contains singularity functions and exponential functions.

These elementary signals are also known as basic signals/standard signals.
Let us discuss these basic signals one-by-one.

1.1.1  UnitImpulse Function:
A continuous-time unit impulse function §(t), also called as dirac delta function is defined as

=

d [ 8(t)ar =1

o t=

S(fy=1"

. an
0, otherwise
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The unit-impulse function is represented by an arrow with strength of ‘1" which represents its ‘area’ or ‘weight’.

N

5(t)

0

Figure-1.2

The above definition of an impulse function is more generalised and can be represented as limiting process
without any regard to shape of a pulse. For example, one may define impulse function as a limiting case of
rectangular pulse, triangular pulse Gaussian pulse, exponential pulse and sampling pulse as shown below:

(i) Rectangular Pulse:

8(t) = lim p(t)

e—0

(ii) Triangular Pulse:

jim 1—m L t]<
8(f) = li>o1 T '

0 >

-T

2e

Figure-1.3

A(t)

-1, - 0 1 1 t

Figure-1.4
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4 | Electronics Engineering

(iii) Gaussian Pulse:

8(t) = lim 1[671112/7:2}

=0T

MEDE ERSY
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(iv) Exponential Pulse

8(1) = lim i[e—\r\ﬂ

10271

(v) Sampling Function:

=

j 53a(kt)dt =1
T

—oco

0 t
Figure-1.5

0 t
Figure-1.6
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Fig. (a)

t

~nN
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Fig. (b)

Figure-1.7
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Properties of Continuous Time Unit Impulse Function

(i) Scaling property:

5(at) = |;—|8(t)

Proof:
y

|l

Sat) = —8()

Integrating above equation on both the sides with respectto ‘'t

+oo Foo 1
[8anat = | o0
Let at=1

Signals and Systems | 5

'a'is a constant, postive or negative

a-dt= gt ; ‘a is a constant, positive or negative

or lal - dt= ot
. oo i -
Now [ sanat = | 8(17)-%' - [ e

oo
By definition [8at = [3(x)ar=1

|‘J'Af</f‘ Important Expressions
R
QS f

e Sattb) - éS(tig)

(ii) Product property/multiplication property:
x(1)5(t - to) = x(to)s(t - to)

Proof:

- 3(t) is an even function of time.

The function §(t -~ 1) exists only at t = t . Let the signal x(f) be continuous at t = t .

Therefore x(t)8(t-t) = X(T)L:[O -O(t—t,)

x(t)) 6(t—1))

‘ffg _ Important Expressions

o x(1)8(t) = x(0) 8(t)

( www.madeeasypublications.org MADE ERSYH
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(iii) Sampling property:

T x(t)8(t —t,)dt = x(t,)

Proof :
Using product property of impulse function
x(t) 8(t—1t) = x(t)) 8(t—1)
Integrating above equation on both the sides with respect to ‘t’.
+oo +oo

[ 2 8(t-t,)dt = [ x(t)8(t-t,)dlt

—oo —oo

x(t,) fS(l‘ —ty)dt =x(t))

—oo

j/\fg ~ Important Expressions

—oco

(iv) The first derivative of unit step function results in unit impulse function.
8(t) = %u(t)
Proof :
Let the signal x(t) be continuous at t = 0.
oo
Consider the integral f %[u(z‘)] x(t)dt

[ud O] - [ 2@ u@)at
x(e) — [ /() cl(t)
0
= x(o0) = [x(D];
We know from sampling property  x(0) = j x(t) (1) (i)

From equations (i) and (ii), we get

j %[U(t)] x(f)dt = jx(t)S(t) at

—co —oo

On comparing, we get &(t) = —u(t)

(el Theory with Solved Examples MADE EARSY www.madeeasypublications.org)
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(v) Derivative property:
ta . N
J' x(t)8"(t — t,)dt = (—1)"x”(t)‘ -ty <ty <ty and suffix n means n' derivative
t=ty
t
Proof:

Let the signal x(f) be continuous at t = {; where t, < {,< t,.
Consider the derivative %[x(t) 8(t—ty)] = xS (t—1tp)+x'(t)8(t—15)

Integrating above equation on both the sides with respect to ‘t’.

tgd t t
| prEURE to)]dt = [x(t)8(t—to)dt+ [ x'(t) 8(t — to)clt

t t t

t t
[ x(0) (¢ = to)alt + [ x(8) 8(t - to)at

t t

[x(0) 8(t = to)];

t t
[ 208t = to)att + [ x(8) 8(t - to)at

f«] t 1

Here, &(t,-t,) =0and d(f,- ;) =0 because t,# t, or t, # t,

[x(to) 8(t> —to) — x(ty) 8(t; — o))

tr t
[ x(t) 8°(t = to)dlt + | x(1)8(t — to)alt

t t

So, 0

f2 t2
J.x(t) &'(t —tq)at (-1 Ix’(t)S(t —ty)dt (. using sampling property)
4 t
= = (-1)x(t)
to
Hence, [x(t) 8t -to)dt = (1) ¥(t,)
4]

If same procedure is repeated for second derivative, we get

ta
[ 2087t~ t)at = (-1)2x"(t,)
f
On generalising aforementioned results, we get
ty
[x()8"(t-t)at = (~1)an(ty)

b

(vi) Shifting Property:
According to shifting property, any signal can be produced as combination of weighted and shifted
impulses.

x(t) = Tx('c) 8(t-1)dt

—oo

< www.madeeasypublications.org MBDE ERSH Theory with Solved Examples
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Proof:
Using product property
x(1) 8(t-t,) = x(t,) &(t—t,)
Replacing t, by ©
x(1) 8(t—1) = x(t) 8(t-7)
Integrating above equation on both the sides with respect to ‘1.
+oo +oo

j x(t) 8(f - t)dt = j x(t) 8(t - 1)t

—oco —oco

fx(t) S(t—rT)dr

—oco

x(l‘)TS(t —1)dt

x(f)-1= fx(t) S(t—1)dt

—oco

x(f) = Tx('c) 8(t —1)dt

—oco

(vii) The derivative of impulse function is known as doublet function.
d
&'(t) = —3(t
(1) o (1)

Graphically,
&(t)

Figure-1.8
Area under the doublet function is always zero.

Discrete-Time Case
The discrete time unit impulse function §[n], also called unit sample sequence or delta sequence is

defined as
5l = 1, n=0 |
0, otherwise

=3 -2 -1 0 1 2 3 --+n

Figure-1.9
It is also known as Kronecker delta.

(el Theory with Solved Examples MADE EARSY www.madeeasypublications.org)
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Properties of Discrete Time Unit Impulse Sequence
(i) Scaling property:
8[kn] = 8[n]; k is an integer

Proof:
By definition of unit impulse sequence

1, =0
8] = { "
0, n=#0
Similarly, d[kn] = {; /:(n :OO
. kn#
1, n:Q:O
_ K
0, n¢9¢o
k
1, =0
= n =§[n]
0, n#0

(ii) Product property:

x[n]d[n = ng] = x[ng]8[n — ne]
From definition,

8[n-n,] = {; Zz Zz
We see that impulse has a non zero value only at n = n,
Therefore, x[n]8[n-ny] = x[n]| _ - 8[n - ny]
x[n] 8[n—n,] = x[ny] 8[n—n,]
(iii) Shifting property:
oo

x{nl= Y «[k18[n - K]

Kk=—oo
Proof:
From product property
x[n]8[n—ny] = x[ny] 6[n—ny]
Replacing n, by ‘K
x[n] 8[n— K] = x[K] 8[n— K]

Signals and Systems | 9

oo oo
N 3 xnlsln-kl= X, xk18[n-K]
k=—co K=—co
< www.madeeasypublications.org MADE ERSYH
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= x[n] Ei d[n-k] = 2” x[k]8[n— k]
k=—oo k=—co
= x[n]-1 = i x[k]18[n - k]

K =—oco

x[n] = i x[k]8[n — K]
Kk=—

oo

(iv) The first difference of unit step sequence results in unit impulse sequence.
d[n]=u[n] - uln -1]

Proof:
By definition of unit step sequence

un = i d[n—K] ()
k=0
= §[n]+ ié[n—k]
k=1
But un-1] = iS[n—k]
k=1

uln] = 8[n] + u[n-1]
We get d[n] = u[n] —u[ln-1]
Graphically we can see

uln]
111
@ 0123 X
uln—1]
T
(b) 012 n n
d[n]
19
(c) o o o o -
Figure-1.10

(el Theory with Solved Examples MADE EARSY www.madeeasypublications.org)
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S.No. | Properties of CT unit Impulse Function | Properties of DT unitimpulse sequence
o, t= K 1, ifn=0;
1. |8@)= and [8(t)dt=1 |8ln]=
0, otherwise e 0, otherwise

2. | x(t) &t —to) = x(f ) (t — 1)

x[n]&[n — k] = x[k][n — K]

3. |&(t)= %u(t)

d[n] =uln] —uln —1]

4. Téi(t—t)d'c:u(t)
0

i o[n —k]=u[n]
k=0

oo

5. | x(t)= jx(r)ext—r)dr

—oo

n] = ix[k] 8n —kl

6. T () 8(t —ty )dt = x(t,)

—oo

=

2 x[n18[n —ng 1= x[ng]

n=—co

S(at) =é8(t)

7. | at+tb)= éé(t ig)

&(—t) = (t)

O[kn] = J[n]

8—n] = &[n]

ty 0), t; <0<t
8. jx(t)S(t)dt:{x() 1SS

0, otherwise

ty
o J 5007 (t —to)dlt =(=1)" x"(t), ty <ty <ty
s

where suffix n mean n derivative

10. | &%t =%6(t)

The Dirac delta function §(t) is defined as

1;

(a) 8(t) = {O |

t=0
otherwise

0; otherwise

(c) 8(t)={1; =0 and TS(t)dt=1 (d) 6(t)={°0°;_ r=0 andTS(t)dt=1

Solution :(d)

(b) &(t)= {0 ;

o; t=0
otherwise

. otherwise

( www.madeeasypublications.org
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The integral IS(t—%)Gsin(t) dt evaluate to

(a) 6 (b) 3
(c) 1.5 (dy 0
Solution :(b)

Given signal is

x(t) = ]S S(z‘—g)Bsint dt

—oco

By shifting property of unit impulse function

to .
Ix(t)S(t —ly)dt = {x(l‘o.), fh<ty<b
4 0: elsewhere

:[06(2‘ —%stin(t) dt = 6- sing

= 6><l=3
2
If y(t) + fg’ y(t) x(t— 7)dt = 8(t) + x(t), then y(t) is
(a) u(t) (b) &(1)
(c) r(t) (d) 1
Solution :(b)
Let W) = 8(1)
W(t) + .f:y('c)x(l‘— T)dt = (1) + j;ﬁ(r)x(z‘—r)dt

= 3(t) + x(1)
So, y(t) = d(t) satisfies the given equation.

Which of the following is NOT a property of impulse function?
(a) x(t) d(t—t) = x(t)) d(t-1t)) (b) x(t) *&(t—t) =x(t-t)

ta +oo n
(c) Ix(t)S(t —to) = x(tp) sty <ty <t (d) j x(t) 8"(t — ty) = (=1)" Zt" x(t)
h oo t=to
Solution :(d)
By derivative property
oo n
[08°C-t) = 1 Lx
e at =ty

(el Theory with Solved Examples MADE EARSY
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