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CHAPTER

Semiconductor Physics

1.1

1.1.1

Conductor, Semiconductor and Insulator

Conduction -T_
A band ' c
9o
0T
Free é S
c Q
Forbidden |¢ o ] electrons 8 —f
E,~6eV ‘/ band \‘ ¢Egz1ev i il
0 0 Q| 8
Holes 8
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Figure-1.1:Simplified energy band diagrams of (a) insulator (b) semiconductor (c) conductor

Insulators

An insulating material has an energy band diagram as shown in Fig. 1.1 (a).

It has a very wide forbidden-energy gap (~ 6 eV) separating the filled valence band from the vacant
conduction band. Because of this, it is practically impossible for an electron in the valence band to
jump the gap, reach the conduction band.

At room temperature, an insulator does not conduct. However it may conduct if its temperature is very
high or if a high voltage is applied across it. This is termed as the breakdown of the insulator.
Example: diamond.

1.1.2 Semiconductors

A semiconductor has an energy-band gap as shown in Fig. 1.1 (b).

At 0°K semiconductor materials have the same structure as insulators except the difference in the size
of the band gap E, which is much smaller in semiconductors (E; ~ 1 eV) than in insulators.

The relatively small band gaps of semiconductors allow for excitation of electrons from the lower
(valence) band to the upper (conduction) band by reasonable amount of thermal or optical energy.
The difference between semiconductors and insulators is that the conductivity of semiconductors can
increase greatly by thermal or optical energy.

Example: Ge and Si.

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples E
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1.1.3 Metals
e Thereis noforbidden energy gap between the valence and conduction bands. The two bands actually
overlap as shown in Fig. 1.1 (c).
e Without supplying any additional energy such as heat or light, a metal already contains a large number
of free electrons and that is why it works as a good conductor.
e Example: Al, Cu etc.

Remember Conduction band electrons can move along sea of atoms present in the specimen under
=< consideration while the valence band electrons (restrained electrons) are bound to parent
9 atom. These conduction band electrons are known as free electrons.
NOTE Since the band-gap energy of a crystal is a function of interatomic spacing, it is not
2 surprising that £, depends somewhat on temperature. It has been determined
experimentally that £, for silicon decrease with temperature at the rate of 3.60 x 10 eV/°K.
Hence, for silicon, E4(T)=1.21-3.60 x10# T
and at room temperature (300°K), E; = 1.1 eV
Similarly, for germanium, ELT)=0.785-223x10*T
and at room temperature, E;=072eV

1.1.4 Semiconductor Materials: Ge, Si and GaAs

Semiconductors: A semiconductor has an energy-band gap as shown in Figure 1.1 (b). At 0°K
semiconductor materials have the same structure as insulators except the difference in the size of the band gap
E, which is much smaller in semiconductors (E; ~ 1 eV) than in insulators.

The relatively small band gaps of semiconductors allow for excitation of electrons from the lower (valence)
band to the upper (conduction) band by reasonable amount of thermal or optical energy. The difference between
semiconductors and insulators is that the conductivity of semiconductors can increase greatly by thermal or
optical energy.

Example: Ge and Si

Semiconductors are a special class of elements having a conductivity between that of a good
conductor and that of an insulator.

Single crystal and compound crystal semiconductor
are two classifications of semiconductor depending upon
number of constitutional elements. Examples of single crystal
semiconductors are germanium (Ge) and silicon (Si) whereas
compound semiconductors are gallium arsenide (GaAs),
cadmium sulphide (CdS), gallium nitride (GaN) and gallium
arsenide phosphide (GaAsP) etc.

Sharing electrons

Valence electrons
Intrinsic Materials and Covalent Bonding

Semiconductor in its purest form (without any impurity)

is known as intrinsic semiconductor. . _ ”
Figure-1.2 : Covalent bonding of the silicon atom
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1.8 Potential Variation in a Open Circuit Semiconductor Bar
As, J=0
Ty + g = 0
N N
I, + Ip 1, + Ip
1,=0
or, Jparint + p gitiusion = O
o]
PCIHpE—qud—Z =0
e (D)1 _ av_, 1P
W, ) P dx dx P dx
Vs P |
—lav = V; | =4
\_J. v T/J; P P
1 1
Py
V-V, = VT(—lnp)P1
P
Voy = Veln| =&
21 T (PQ
Voy Yoy
P=Pe | o |P=Pe
m— Student's . .
@ P . Q.2 In a p-type Si simple the hole concentration is
Assignments D . .
2.25 x 10'%/cmd. The intrinsic carrier concentration
Q.1 Asemiconductor is irradiated with light such that is 1.5 x 10'%cm? the electron concentration is
carriers are uniformly generated throughout its (a) zero (b) 10'%cm3
volume. The semiconductor is n-type with (c) 10%cm3 (d) 1.5x10%5/cm3
N, =10"%/cm3. If th lect - . . .
b fem © excess electron concen Q.3 ASilicon sample A is doped with 108 atoms/cm?®

tration in the steady state is An = 10'®/cm?3 and
if T,= 10 ysec. (minority carries life time) the
generation rate due to irradiation

(a) is 100 e-h pairs/cmd/s

(b) is 102* e-h pairs/cmd/s
(c) is 109 e-h pairs/cmd/s
(d) cannot be determined, the given data is

insufficient

of Boron. Another sample B of identical
dimensions is doped with 108 atoms/cm?3 of
Phosphorus. The ratio of electron to hole mobility
is 3. The ratio of conductivity of the sample Ato
Bis
(@) 3
(b) 2/3

(b) 1/3
(d) 3/2
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Q.4 The concentration of minority carriers in an Q.9 Dirift current in semiconductors depends upon
extrinsic semiconductor under equilibrium is (a) only the electric field
(a) directly proportional to the doping (b) only the carrier concentration gradient
concentration (c) both the electric field and the carrier
(b) inversely proportional to the doping concentration
concentration (d) both the electric field and the carrier
(c) directly proportional to the intrinsic concentration gradient
concentration
(d) inversely proportional to the intrinsic " ANSWERS
concentration 1. (a) 2. (0 3. (b) 4. (b) 5. (a)
Q.5 Underlow level injection assumption, the injected 6. (d) 7. (d) 8 (a 9. (0
minority carrier current for an extrinsic
semiconductor is essentially the “, Student's
(@) diffusion current Assignments | Explanations
(b) drift current
(c) recombination current 1. (a)
(d) induced current 1020 e-h pairs/cm,/s
Q.6 Aheavily doped n-typed semiconductor has the Chepiiab Az logicm®
. 1t = 10 psec = 10 x 106 sec.
following data: P
Hole-electron mobility ratio : 0.4 , A 10"
Doping concentration : 4.2 x 108 atoms/m?3 CeneiteniEier= ; - 10x107°
Intrinsig concentration : 1.5 x 104 atoms/m3 | ~ 1020 e-h pairs/oms
The ratio of conductance of the n-type semi-
conductor to that of the intrinsic semiconductor 2. (o) .
of same material and at the same temperature By Mass Action Law
is given by np=rf
(a) 0.00005 (b) 2,000 where,
(c) 10,000 (d) 20,000 n = electron concentration
Q.7 The electron and hole concentrations in an p = hole concentration
intrinsic semiconductor are n, per cm? at 300 K. n; = Intrinsic carrier concentration
Now, if acceptor impurities are introduced with a p=2.25x10"/cm?
concentration of N, per cm® (where N, >> n) n,=1.5x10'%cm?
Lhe electron concentration per cm? at 300 K will i ’7,-2 (15x101°2  2.25%x10%°
e =7 5 15
@ n (©) n+N, p  225x10 2.25x10
e n=10%cm3
(€) N,y-n, (d) Ny 3. (b)
o, = Ngu,
Q.8 The ratio of the mobility to the diffusion coefficient
in a semiconductor has the unit Sp - Hp - l
(@ V- (b) cm x V- o, My 3
(c) Vxcm™ (d) Vxs

( www.madeeasypublications.org
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4. (b) 7. (d)
np = ’7,2 By the law of electrical neutrality
p+Ny=n+N,
n. = constanj[ o . . as Ny=0
For n-type p is minority carrier concentration N,>n=0 p=N,
~ i using mass action law np = r?
p= = ) E
1 So, n="1" - I\ll
6. (d) 8. (a)
For n-type semiconductor, 6, = nqu,, D
For intrinsic semiconductor, m =Vr

Gi = HZQ(H,’;+ up)
s, nu, = % = — = units: V!

o, nu,+ug)

9. (c)
4.2x10° xp, J=nev,
15x10* xu, (1+”—”J Put, Va=HE
n J=neunk
Hence, I=nep EA
_ 4.2x10° 2% 10” So, I depends upon carrier concentration and
1.5x10% x1.4 electric field.

@ Theory with Solved Examples MADE ERSY www.madeeasypublications.org)




CHAPTER

Operational Amplifier

12.1 Introduction

Linear integrated circuits are being used in a number of electronic applications such as in fields like
audio and radio communication, medical electronics, instrumentation control, etc. An important linear IC
is operational amplifier which will be discussed in this chapter.

The operational amplifier (commonly referred to as op-amp) is a multi-terminal device which internally is
quite complex. Fortunately, for the ordinary user, it is not necessary to know about the op-amp’s internal
make-up. The manufacturers have done their job so well that op-amp’s performance can be completely
described by its terminal characteristics and those of external components that are connected to it.
However, the electronics of op-amp is described where various stages of op-amp are discussed.

12.2 Block Diagram Representation of A Typical Op-Amp

Non-inverting

input
oO———>
Input Intermediate sh?f\tliil Output Output
stage stage . eg stage utpu
oO——> 9
Inverting
input Dual-input Dual-input Such as Complementary
balanced-output  unbalanced-output emitter follower symmetry
differential differential using constant push-pull
amplifier amplifier current source amplifier

Figure-12.1: Block diagram of a typical op-amp

° An operational-amplifier is a direct-coupled high gain amplifier usually consisting of one or more
differential amplifiers and usually followed by a level translator and an output.

° The input stage is the dual-input, balanced-output differential amplifier. This stage generally provides
most of the voltage gain and also establishes the input resistance of the op-amp.

o The intermediate stage is usually another differential amplifier, which is driven by the output of the
first stage. In most amplifiers the intermediate stage is dual input, unbalanced (single-ended)
output.

° As direct coupling is used, so the DC voltage at the output of the intermediate stage is well above
ground potential. Therefore, generally, the level translator (shifting) circuit is used after intermediate
stage to shift the DC level at the output of intermediate stage downward to zero volts with respect
to ground.

E Theory with Solved Examples MADE ERSY www.madeeasypublications.org)
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° The final stage is usually a push-pull complementary amplifier output stage. The output stage
increases the output voltage swing and raises the current supplying capability of the op-amp. A
well-designed output stage also provides low output resistance.

NOTE The operational amplifier is a versatile device that can be used to amplify DC as well as

Iy AC input signals and was originally designed for computing such mathematical functions

as addition, subtraction, multiplication, and integration. Thus the name operational
amplifier stems from its original use for these mathematical operations.

12.3 Schematic Symbol y

. ) 2
Given an op-amp schematic diagram, we can save Inverting input 6———~ Yo
time by using a schematic symbol for the entire Non-inverting input oV—+ Output
_ oLt Fi i 1
op-amp C|rcu|t.. Flg: (1?.2) shoyvs the most widely used Figure-12.2: Schematic symbol for the op-amp
symbol for a circuit with two inputs and one output.

For simplicity, power supply and other pin connections are omitted. Since the input differential stage of
the op-amp is designed to be operated in the differential mode, the differential inputs are designated by
the (+) and (=) notations. The (+) input is non-inverting input. An AC signal or DC voltage applied to this
input produces an inphase (or same polarity) signal at the output. On the otherhand, the (-) input is
inverting input because an AC signal or DC voltage applied to this input produces an 180° out-of-phase
(or opposite polarity) signal at the output.

In figure
V, = Voltage at the non-inverting input (volts)
V, = Voltage at the inverting input (volts)
V5 = Output voltage (volts)
Here V,= AV -V) ..(12.1)

All these voltages are measured with respect to ground.
where, A = Large-signal voltage gain, which is specified on the data sheet for an op-amp.

12.4 Operational Amplifier Characteristics

In an ideal op-amp it is assumed that the op-amp responds equally well to both DC and AC input
voltages. However, a practical op-amp does not behave this way. A practical op-amp has some DC
voltage at the output even if both the inputs are grounded. The factors responsible for this and the
suitable compensating techniques are discussed here.

12.5 DC Characteristics

An ideal op-amp draws no current from the source and its response is also independent of temperature.
However, a real op-amp does not work this way. Current is taken from the source into the op-amp inputs.
Also the two inputs respond differently to current and voltage due to mismatch in transistors. A real
op-amp also shifts its operation with temperature. These non-ideal DC characteristics that add error
components to the DC output voltage are:

o Input bias current. e Inputoffset current.

o Input offset voltage. e Thermal drift.

( www.madeeasypublications.org MBDE ERSH Theory with Solved Examples E




CHAPTER

Signal Generators and
Waveform Shaping Circuits

13.1

13.2

13.2.1

Introduction

There are two distinctly different approaches for the generation of sinusoids, perhaps the most commonly
used of the standard waveforms. The first approach employs a positive-feedback loop consisting of an
amplifier and an RC or LC frequency-selective network. The amplitude of the generated sine waves is
limited, or set using a non-linear mechanism, implemented either with a separate circuit or using the non-
linearities of the amplifying device itself. In spite of this, these circuits, which generate sine waves
utilizing resonance phenomenon, are known as linear oscillators.

Circuits that generate square, triangular, pulse (etc.) waveforms called non-linear oscillators or function
generators, employ circuit building blocks known as multivibrators. There are there types of
multivibrators: the bistable, the astable and the monostable. The multivibrator circuits presented in this
chapter employ op-amps and are intended for precision analog applications.

Oscillators

Thus far we have examined op-amps wired as amplifiers. This section will introduce the use of
op-amps as oscillators capable of generating a variety of output waveforms. Basically, the function of an
oscillator is to generate alternating current or voltage waveforms. More precisely, an oscillator is a circuit
that generates a repetitive waveform of fixed amplitude and frequency without any external input signal.
Oscillators are used in radio, television, computers and communications. Although there are different
types of oscillators, they all work on the same basic principle.

Basic Principles for Oscillation

An oscillator is a type of feedback amplifier in which part of the output is fedback to the input via a
feedback circuit. If the signal feedback is of proper magnitude and phase, the circuit produces alternating
currents or voltages. To visualize the requirements of an oscillator, consider the block diagram of
Figure (13.1). This diagram looks identical to that of the feedback amplifiers. However, here the input
voltage is zero (v, = 0). Also the feedback is positive because most oscillators use positive feedback.

waw.madeeasypublications.org MBDE ERSH Theory with Solved Examples E
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Feedback Feedback
v circuit B % vy circuit Vo

'DU'

Figure-13.1: Oscillator block diagram
In the block diagram of Fig. (13.1),

Va = Vit Vin
Vo = AV,
ve= By,
using these relationships, the following equation is obtained:
Uy AN
Vin - 1_AB
However, v, = 0 and v, # 0 implies that,
AB = 1

Expressed in polar form

| AB=1.,0° or 360°

Equation (13.2) gives two requirements for oscillation:
o the magnitude of the loop gain Ap must be at least 1, and

o the total phase shift of the loop gain Ap must be equal to 0° or 360°.
The condition given by equation (13.2) is known as Barkhausen criterion.
Infigure (13.1) if the amplifier causes a phase shift of 180°, the feedback circuit must provide an additional
phase shift of 180° so that the total phase shift around the loop is 360°. The type of waveform generated
by an oscillator depends on the components in the circuit hence may be sinusoidal, square or triangular.
In addition the frequency of oscillation is determined by the components in the feedback circuit.

Oscillator Types

..(13.1)

..(13.2)

Because of their widespred use, many different type of oscillators are available. These oscillator types

are summarized in table.

Types of components used | Frequency of oscillation

Types of waveform generated

RC oscillator Audio frequency (AF)

LC oscillator Radio frequency (RF)

Crystal oscillator

Sinusoidal

Square wave

Triangular wave

Sawtooth wave, etc.

Note: In every practical oscillator the loop gain is slightly larger than unity, and the amplitude of the

oscillations is limited by the onset of non-linearity.

ﬁ Theory with Solved Examples
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13.3 The Phase-Shift Oscillator

We select the so called phase-shift oscillator [Fig. (13.2)]
as a first example because it exemplifies very simply the
principles set forth above. Here an FET amplifier of
conventional design is followed by three cascaded
arrangements of a capacitor C and a resistor R, the output
of the last RC combination being returned to the gate. If the
loading of the phase-shift network on the amplifier can be
neglected, the amplifier shifts by 180° the phase of any
voltage which appears on the gate, and the network of
resistors and capacitors shifts the phase by an additional
amount. At some frequency the phase-shift introduced by - -
the RC network will be precisely 180° and at this frequency
the total phase-shift from the gate around the circuit and Figure-13.2: An FET phase-shiftoscillator
back to the gate will be exactly zero. This particular frequency

will be the one at which the circuit will oscillate, provided that the magnitude of the amplification is
sufficiently large.

The frequency of oscillation for this circuit is given by

3
1=——
2n RC\6 ..(13.3)

At that frequency of oscillation, B = +%. In order that| BA| shall not be less than unity, it is required that

| Albe at least 29. Hence an FET with u < 29 cannot be made to oscillate in such a circuit.

13.3.1 Phase Shift Oscillator Using BJT

RC phase-shift oscillator using BJT is shown in Fig. (13.3), the output R of the feedback network would
be shunted by the relatively low input resistance of the

transistor. e
The frequency of oscillation is given by
&é LR, §§ R o
f= L . 1 - MWW H
2rRC J6+4K | -(134)
1
where K = R_/R. The condition for sustaining of oscillation o c | c
is given by B, B, D s <
= s :; R :; R
29 R 2 1 7 7
hfe>4K+23+7 ...(13.5) I C/T EERe
Remember: )

Figure- 13.3: (Transistor phase-shift oscillator)
The value of K which gives the minimum h, turns out to be

2.7 and for this optimum value of A_/R, we find h, = 44.5.
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13.3.2 Phase-Shift Oscillator with Op-Amp
The phase shift oscillator using op-amp is shown in Fig. (13.4).

AAAA N AAAA
\AAAJ yyvy
R, Rr

—O

__________________________

Figure-13.4: Phase-shift oscillator using op-amp

The op-amp is used in the inverting mode; therefore, any signal that appears at the inverting terminal is
shifted by 180° at the output. An additional 180° phase shift required for oscillation is provided by the
cascaded RC networks. Thus the total phase shift around the loop is 360° (or 0°). At some specific
frequency when the phae shift of the cascaded RC networks is exactly 180° and the gain of the ampilifier
is sufficiently large, the circuit will oscillate at that frequency. This frequency is called the frequency of
oscillation f, and is given by

- 1 _0.065
°~onJ6RC RC -(13.6)
At this frequency, the gain A must be at least 29.
That is,
Re
—| =29 ..(13.7
R (13.7)

or ~(138)

The disadvantage of RC phase-shift oscillator is that the frequency of oscillation can not be altered. In
further we will study the oscillators in which frequency can be altered by changing circuit parameters.

An FET oscillator uses the given phase shift network as shown below. The
minimum gain required for oscillation is
R c
o—wrvT F+—o
c E%R
1 1.
(a) - 29 (b) 1
(c) 3 (d) 29
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