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CHAPTER

Vector Analysis

1.1 Introduction

This introductory chapter provides an elegant mathematical language in which electromagnetic (EM)
theory is conveniently expressed and best understood. The quantities of interest appearing in the study of EM
theory can almost be classified as either a scalar or a vector.

Quantities that can be described by a magnitude alone are called scalars. Distance, temperature, mass
etc. are examples of scalar quantities. Other quantities, called vectors, require both a magnitude and a direction
to fully characterize them. Examples of vector quantities include velocity, force, acceleration etc.

In electromagnetics, we frequently use the concept of a field. A field is a function that assigns a particular
physical quantity to every point in a region. In general, a field varies with both position and time. There are scalar
fields and vector fields. Temperature distribution in a room and electric potential are examples of scalar fields.
Electric field and magnetic flux density are examples of vector fields.

NOTE: Vectors are denoted by an arrow over a letter (4 ) and scalars are denoted by simple letter (A).
1.1.1 UnitVector
A unit vector a4, along 4 is defined as a vector whose magnitude is unity (i.e., 1) and its direction is

along 4, thatis

s A A

a = == 11
Thus we can write 4 as

A = Ady= A, (1.2)

Remember: Any vector can be written as product of its magnitude and its unit vector.
1.1.2 Vector Addition and Subtraction
Two vectors 4 and B can be added together to give another vector C ; that is,

C = A+B -(1.3)
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(b)

Figure. 1.1: Vector addition (a) parallelogram rule, (b) head-to-tail rule.

NOTE " A+B=B+A (Commutative law)

= (A+B)+C=A+(B+0) (Associative law)

Vector subtraction is similarly carried out as
D = A-B=A+(-B) (1.4

Remember: Graphically, vector addition and subtraction are obtained by either the parallelogram rule or the
head-to-tail rule as potrayed in figure 1.1.

NOTE s K(A+B)=kA+kB (Distributive law)
A+B 15 13
[ ] k —}Aﬁ'?B

1.1.3 Position and Distance Vectors:
A point Pin cartesian coordinates may be represented by (x, y, 2).
The position vector Fp (or radius vector) of point Pis defined as the directed distance from origin Oto P.

fp = xa,+ya, +za, ..(1.5)
V4
P,y 2)
A
/O y
X
- o . z
Figure 1.2:lllustration of position vector I, = xa, + ya, + za,
The distance vector is the displacement from one point to another. Rop 0
- P -y
Consider point P with position vector rp and point Q with position . fq y
)
vector E . The displacement from Pto Qs written as x

_ o Figure 1.3: Vector distance ﬁpo
Rpg = rq—1Ip ..(1.6)

(el Theory with Solved Examples MADE EARSY www.madeeasypublications.org)
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m Point P and Q are located at (0, 2, 4) and (-3, 1, 5). Calculate

(a) The position vector P

(b) The distance vector from Pto Q
(c) The distance between Pand Q
(d) A vector parallel to PQ with magnitude of 10.

Solution:
(a) Iy = 0a,+2a,+4a, = 24, +44,
(b) Arg = fg=1p, =(-3,1,5)-(0,2,4) = (-3, -1, 1)

= -33,-4a,+a,
(c) The distance between Pand Q is the magnitude of Rpq ; that is

d = |Real=v9+1+1=3.317

(d) Lettherequired vector be A, then

where A = 10 is magnitude of A

and éA — EPQ =i(_3,_1, 1)
Real 3.317

then A = J_,M
3.317

= +(-9.0454, -3.0158, + 3.0154,)

1.1.4 Vector Multiplication
When two vectors are multiplied, the result is either a scalar or a vector depending on how they are
multiplied. Thus there are two types of vector multiplication.

1. Scalar (or dot) product: A - B

2. Vector (or cross) product : AxB

Multiplication or three vectors A, B, C can result in either
3. Scaler triple product: A . (BxC)

4. Vector triple product : A x (B x C)
Dot Product:

The dot product, or the scalar product of two vectors A and B, written as A . B is defined geometrically
as the product of the magnitudes of A and B and the cosine of the angle between them.
Thus A-B = ABcos 0, L(1.7)

Where 0,5 is the smaller angle between A and B. The resultof A. B is called either the scalar product
because it is scalar, or the dot product due to the dot sign.

If A = (ALA,A,)
and B = (BxlBleZ)
then A-B=AB +AB+A,B, ..(18)

( www.madeeasypublications.org MBDE ERSH Theory with Solved Examples
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NOTE: Two vectors A and B are said to be orthogonal (or perpendicular) with each other if A.B =0

The dot product obeys the following:

Law Expression
Commulative A-B=B A (1.9
Distributive AB+C) = AB+AC ..(1.10)
A A = [4AR=|AP L(1.11)
Also note that:
a,-a, = a,-a,=a,-a,=0 (1.12)
a,-a4 = a,-a,=4a,-a,="1 (1.13)

Cross Product:
The cross product of two vectors A and B, written as A xB, is a vector quantity whose magnitude is
the area of the parallelopiped formed by Aand B and is in the direction of advance of the right-handed screw as

A is turned into B.

Figure 1.4:The cross product of A and Bisavectorwith magnitude equal
to the area of parallelogram and the direction as indicated

Thus AxB = ABsin0,54, L(1.14)
where &, is a unit vector normal to the plane containing Aand B.

The vector multiplication of equation (1.14) is called cross product due to the cross sign. Itis also called
vector product because the result is a vector.

i A =(A, A, A)and B= (B, B, B,)then :
a & &
AxB = Ax Ay Az ..(1.15)
B. B, B,
AxB = (AB. - AB)A +(AB - AB)A, +(AB, - AB)a,

...(1.16)
Which is obtained by ‘crossing’ terms in cyclic permutation, hence the name cross product.

Note that the cross product has the following properties
1. It is not commutative:

AxB # BxA .(1.17)

(el Theory with Solved Examples MADE EARSY www.madeeasypublications.org)
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NOTE: Ax B# Bx A

2. It is not associative:
Ax(Bx C)# (AxB)x C ..(1.18)
3. It is distributive:
Ax(B+C)=AxB+ Ax¢C ..(1.19)
NOTE: A x A =0
4. Also note that
A, X8, = 4, ..(1.20)
8y X8, = 4, .(1.21)
a,xa, = a, ..(1.22)

NOTE: If A x B =0, thensin 0 ,5 = 0° or 180°; this shows that A and B are parallel or antiparallel to each other
Scalar Triple Product:
Given three vectors A, B, and C , we define scalar triple product as,
A-(BxC)=B.(CxA)=C .(AxB) ..(1.23)
if A= (A, A, A), B = (B, B, B)and ¢ = (C, C, C), then A . (B x ) is the volume of a
parallelopiped having A, B, and ¢ as edges and is easily obtained by finding the determinant of
the 3 x 3 matrix formed by A, B, and ¢ ; thatis
A A A
A-(Bxc)=|B. B, B .(1.24)
C. Cy C,
Since the result of this vector multiplication is scalar these two equations are called the scalar triple

product.

Vector Triple Product:

For vectors A, B, and ¢, we define the vector triple product as

Ax(BxC) = B(A.C)-C(A.B) ..(1.25)
This is obtained using the “bac-cab” rule.

m Given vectors A =34, +44, +4, and B =24, - 54, , find the angle between
A and B
Solution:

The angle 6,5 can be found by using either dot product or cross product
A.-B=(341).(02-5=0+8-5=3

Al = 32 442 4 2 = o6
|Bl = V0% +2%2 +5% =29

( www.madeeasypublications.org MBDE ERSH Theory with Solved Examples
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CcoSs eAB =

0,5 = cos™' (0.01092) = 83.73°

Alternatively:

a, a, a,
AxB =3 4 1|=(20-2)4,+(0+15)8, +(6-0)a,
0 2 -5
= (-22, 15, 6)
AxBl = (-222+ (16 + (6 = V745
. AxB J745
SN0,z = =

0,5 = sin~' (0.994) = 83.73°.

MEDE ERSY

Postal Study Package PIJE]

A B 3

ARE=A 1092
IAlBl \(26)x (29)

[A1Bl~ J26)x (29)

R =24, -34, + 4, . Determine:
(a) (P+Q)x(P-Q)
(c) P.(@QxR)
(e) P x(@xR)
(g) The component of P along Q

Solution:

(a) (P+Q) x(P
(b) Q.(Rx
Alternatively: Q.(Rx

Three field quantities are given by P=23 —4, and Q=

(b)
(d)

Q . (RxP)
Sin B4

A unit vector perpendicular to both @ and R

(f)

= 2(QxP)
4 &, a,
2 0 -1
= 2(1-0)4,+2 (4 +2)8, +2(0 + 2)4,
= 24, +12a,+ 44,
& 4, &
P)=(2-1,2).l2 -3 1
2 0 -1
=(2,-1,2).(3, 4, 6)
=6-4,12=14
2 -1 2
Py=|2 -3 1|=14
2 0 -1

(el Theory with Solved Examples
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(c) P(QxR) = Q(RxP) = 14
. QxR _ 45
d Opp = =—==——=0.
(d) Sin 05 RIEREND 0.5976
(e) Px(QxR) = QP.R) - RP.Q)
=2,-1,2)(4+0-1)-(2,-3,-1)(4+0-2)
= (2,3, 4)

=24 + Séy +4a,
(f) A unit vector perpendicular to both Q and R is given by

5. QxR _ +(52,-4)
" TloxAl a5
= +(0.745,0.298, — 0.596)
3, = +(0.7454, +0.2984, -0.5964,)

n

Note that, lal =1, 4.0=48FR=0

The component of P along Q is

Po = Pl cos 8., &g

(PO)QA (4+0-2)2,-12)

ok~ (4+1+4)

2
= 5(2,—1,2)

= 044444, ~0.22228, + 044444,

1.2 Coordinate Systems
A coordinate system defines points of reference from which specific vector directions may be defined.

Depending on the geometry of the application, one coordinate system may lead to more efficient vector
definitions than others. The three most commonly used co-ordinate systems used in the study of electromagnetics
are rectangular coordinates (or cartesian coordinates), cylindrical coordinates and spherical coordinates.

NOTE: An orthogonal system is one in which the coordinates are mutually perpendicular
1.2.1 Cartesian Coordinates
Avector A in Cartesian (other wise known as rectangular) coordinates can be written as
(A A, A)or Aa +Aa, +Aa, ..(1.26)

Where a,, a, a,are unit vectors along the x, y and z directions

( www.madeeasypublications.org MBDE ERSH Theory with Solved Examples
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«— Y = constant

. — z=constant

x = constant

X
Figure 1.5: A point in Cartesian coordinates is defined by the intersection
of the three planes: x = constant, y = constant, z = constant.

The three unit vectors are normal to each of the three surfaces.

The ranges of the variables are:

_oogyg+oo ...(1.27b)
—00 <7< + o0 (1270)

1.2.2 Cylindrical Coordinates

The cylindrical coordinate system is very convenient whenever we are dealing with problems having
cylindrical symmetry.

A point Pin cylindrical coordinates is represented as (p, ¢, 2) and is as shown in Fig 1.6. Observe Fig. 1.6
closely and note how we define each space variable; p is the radius of the cylinder passing through Por the radial
distance from the z-axis; ¢, called the azimuthal angle, is measured from the x-axis in the xy-plane; and zis the
same as in the Cartesian system. The ranges of the variables are:

0<p<oo ...(1.28)
0<o<2n
—0 < Z< oo

Avector 4 incylindrical coordinates can be written as

(A, Ay A)or Ad, +Ad, + A, ..(1.29)

?Z (1, 04, 29)

;|

¢ = a constant
X ¢  p=aconstant x
(a) (b)
Figure 1.6: (a) The pointis defined by the intersection of the cylinder and the two planes.
(b) Point P and unit vectors in the cylindrical coordinate system.

Notice that the unit vectors & é¢ and &, are mutually perpendicular because our coordinate system is
orthogonal.

8,8, = 8-4,=8,-4,=0 ...(1.30)

(el Theory with Solved Examples MADE EARSY www.madeeasypublications.org)
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>

8,8 = 8°3=38"3~=1 .(1.31)
4,x8, = a, ..(1.32)
& *&; = &, .(1.33)
a,x4, = 4, .(1.34)

The relationships between the variables (x, y, 2) of the cartesian coordinate system and those of the
cylindrical system (p, ¢, z) are easily obtained from figure 1.7.

Point transformation, P = 4/x° +y2,, o= tan’1£, z=2z ...(1.35)

or,
X=pCcoso, y=psing, z=2z ...(1.36)

Whereas equation (1.35) is for transforming a point from cartesian (x, y, 2) to cylindrical (p, ¢, z) coordinates,
equation (1.36) is for (p, ¢, 2) — (x, y, z) transformation.

The relationships between a,.a,,a, and ép,éq),éz are psin o
Vector transformation, &_ = cos¢&, -sin¢g, ...(1.37 a) peos ¢ £
R A o S P
y = sinoa, +cosoa, ...(1.37 b)
a, = a, ...(1.37¢c) z
or, S y
a, = cos¢a, +sinoa, ...(1.384a) TR
8, = -sin¢a, +cos¢a,  ..(1.38Db)
A A ¥ Figure 1.7:Relationship between (x, y, z)
a, = a, ..(1.38¢) and(p,0,2)
Finally, the relationship between (A, Ay, A)) and (Ap, A¢, A) are
Ay coso sing OlA,
Ay| = |-sing cos¢ OfA, ..(1.39)
A, 0 0 1A,
A, cos¢ -sing O]A
Al = sing cos¢o Of|A, ...(1.40)
A, 0 0 1A,

1.2.3 Spherical Coordinates

The spherical coordinate system is most appropriate when dealing with problems having a degree of
spherical symmetry. A point Pcan be represented as (r, 0, ¢) and is illustrated in figure. 1.8. From figure. 1.8, we
notice that ris defined as the distance from the origin to point P or the radius of a sphere centered at the origin
and passing through P; 6 (called the colatitudes) is the angle between the z-axis and the position vector of P;
and ¢ is measured from the x-axis (the same azimuthal angle in cylindrical coordinates). According to these
definitions, the ranges of the variables are

0<r<eo ..(1.41)

0<06<m

0<o<2n

( www.madeeasypublications.org MBDE ERSH Theory with Solved Examples
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A vector A in spherical coordinates can be written as

(A, Ay Ay OF A, + Ay + A,

¢ = a constant
(plane)
r=a constant

h
(sphere) b)

(c) (d)

Figure 1.8: (a) PointP and unitvectors inthe cylindrical coordinate system.

(b) Thethree mutually perpendicular surfaces of the spherical coordinate system.

(c) Thethreeunitvectors of spherical coordinates.
(d) Thedifferential volume element in the spherical coordinate system.

.(1.42)

NOTE: The unit vectors é,, ée and é¢ are mutually perpendicular because our coordinate system is orthogonal.

ér'ée = ée‘éq>=é¢'ar=o

b8 =& 8=838-~=1
4 x5 = &
B8 = 4,
é(bXéf = &

..(1.43)
.(1.44)
..(1.45)
..(1.46)
.(1.47)

The relationship between the variables (x, y, 2z) of the cartesian coordinate system and those of the

spherical coordinate system (p, 6, ¢) are easily obtained from figure 1.8.

[.2 2
Point transformation, r=x2 +y2 +72,0= tarﬂxiﬂ/, o= tan~' ¥
z X
or x=rsinbcosd, y=rsinOsingd, z=rcos 6

The relationship between &,,a,,4, and é,,ée,é¢ are

Q>

. = SINOCOS0E, +COSHCOSHG, — SNG4,

y = SiNOSING&, + CosOSINGE, + COS04,

..(1.48)
..(1.49)

..(1.50a)
..(1.50b)

(el Theory with Solved Examples MADE EARSY www.madeeasypublications.org)
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a, = COS¢&, —singa, .(1.50¢)
or, &, = sinBcoso0a, +sinBsinga, +cosoa, ..(1.51a)
4, = cosBcosoa, +cosbsinga, —sinba, ..(1.51Db)
g, = —sinea, +cos¢a, .(1.51¢)
Finally, the relationship between (A, A, A)) and (A, A, A,) are
A, sinfcos¢  sinBsing  coso ||A,
Vector transformation, A| = |cosBcos cosBsing —sing||A, ..(1.52)
A, -sing COoSo 0 |4,
A, sinfcosd cosBcosod —sindl|A,
or, Al = sinBcos¢ cosBsing cosd|A,
A, coso —-sin® 0 ||A,
z
p=rsin®
Y P(x, y, 2) = P(r, 6, 9) = P(p, 9, 2)
z=rcos6
,
0 z
y
p
s x=pcos
x/ y=psind

Figure 1.9: Relationships between space variables
(x,y,2),(r,6,0)and (p, ¢, 2)

Write an expression for a position vector at any point in space in the
rectangular coordinate system. Then transform the position vector into a vector in the cylindrical
coordinate system.
Solution:
The position vector of any point P(x, y, 2) in space is

A = xa,+ya, +za,
Using the tranformation matrix as given in equation (1.39), we obtain

Ap =xCOSd+ysing

Aq) =-xsin¢+ycospand A, =2z
Substituting x = p cos ¢ and y = p sin ¢, we obtain

~ Ap=p,A¢=O,andAZ=z

Thus, the position vector A in the cylindrical coordinate system is

A = p4, +za,

( www.madeeasypublications.org MBDE ERSH Theory with Solved Examples
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Given point P(-2, 6, 3) and vector A = ya, +(x+ 2)a,,expressPand A in
cylindrical and spherical coordinates. Evaluate A at Pin the cartesian, cylindrical, and spherical systems.

Solution:
At point P: x=-2,y=6, z=3. Hence,
p=x2+y2=J4+36=632
o= tan'L = tan' 2 —108.43°
z=3
r=Jx®+y?+2°=J4+36+9=7
/.2 2 /
0 = tan 1YY g 1¥EH36 gy 60
z 3
Thus,

P (-2, 6, 3) = P(6.32,108.43°, 3) = P(7,64.62°, 108.43°)
In the cartesian system, A at Pis

A = 6a +a

For A, A =¥ A =x+2 A, =0.Hence, inthe cylindrical system

>

o cos¢ sing Of|y
-sing cos¢ Oflx+Z
0 0 1{0

A

>

Z

Ap = ycos ¢+ (x+ 2) sind
A¢:—ysin¢+(x+z)cos¢
A, =0

Butx = p cos ¢, y = p sin ¢, z = z, and substituting these yields

A =(A, A, A)=[psingcos o+ (pcos ¢+ 2)sin¢] &

or

+ [~ psin? ¢ + (p cos ¢ + 2) cos 9] &,

AtP p = /40, tanq):%
Hence, cos ¢ = _FZO’ sinq):%
-2 6 -2 6 |, 36 -2 -2 1.
A= |40 —= 24| J40- = +3 | —— |4, +| /40 - = 4| 40 - = +3 | = |4
{ 40 40 ( J40 )%}" { 40 { J40 Jao |7

6, 38 . 5 .
- 25 % 5 004875 —6.008
Jao % Jao ’ *

Similarly, in the spherical system
A sindcos¢ sinBsing coso|| y
Ay CosSOCcos¢p CcosOsing —sind||x+ Z|
A, -sing COS¢ 0 0

(el Theory with Solved Examples MADE EARSY www.madeeasypublications.org)
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1.3

1.3.1

or, A, =ysinBcos ¢+ (x + 2) sin O sin ¢
Ay = ¥ C0s 0 Cos ¢ + (x + 2) cos 0 sin ¢

Aq) =-ysin¢ + (x + 2) cos o
But, x = rsin 6 cos ¢,
y = rsin 6 sin ¢,
Z = rcos 0,
and substituting these yields
A= (Ar’ Ae' A¢)

r[sin® 0 cos ¢ sin ¢ + (sin © cos ¢ + cos 0) sin B sin 0] &,
+r{sin® cos 6 sin ¢ cos 0 + (sin 6 cos ¢ + cos B) cos O sin ¢] &,

+ r[-sin ® sin? ¢ + (sin B cos ¢ + cos B) cos ¢] é¢

At P r=7,tan¢=£, tane=@
2 3
-2 . 6 3 40
Hence, cosh = —, sing=—, cosf =—, sing = ——
°= o’ i J40 7 7
A-7|4 -2 6 (V40 -2 3) V40 6 |,
49 J40 a0 | 7 a0 7) 7 Ja0|"
;|40 3 6 2 (V40 -2 3.§.6ée+7 /40 36 (V40 2 3] -2 |.
49 7 a0 yao | 7 Jao 7]7 Va0 49 207\ 7 a0 7| a0 |
_—6A & -
=7 7J_ J_

= -0.85714, —0.4066 4, - 6.008 3,

Note that | Al is the same in the three systems; that is,
|A, v, 2)| = |A(p, 0, 2) = |Alr 6, ¢)| =6.083.

Vector Calculus

Introduction
The first section is mainly focused on vector addition, subtraction, and multiplication in cartesian

coordinates, and the second section extended all these to other coordinate systems. This chapter deals with
vector calculus-integration and differentiation of vectors. The concepts introduced in this section provide a
convenient language for expressing certain fundamental ideas in electromagnetics in general.

1.3.2 Differential Length, Area and Volume

In our study of electromagnetism we will often be required to perform line, surface, and volume integrations.

The evaluation of these integrals in a particular coordinate system requires the knowledge of differential elements
of length, surface, and volume. In the following subsections we describe how these differential elements are
constructed in each coordinate system.
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Cartesian Coordinates
From figure 1.10, we notice that:
1. Differential displacement is given by:

di = dxa, +dya, +dza,

2. Differential normal area is given by:

dydza,
ds = {dxdza,
dxdya,
3. Differential volume is given by:
dv = dxdydz

Volume = dx dy dz

dx dy dzl

P
dy dz T dxdz
dy

(a) X (b)

Figure 1.10: Differential elements in the right-handed cartesian coordinate system

dy dx
W o § ” &
A d

z

Figure 1.11 : Differential normal areas in Cartesian coordinates.
The way g is defined is important. The differential surface (or area) element
defined as:
gs = dsa,

MEDE ERSY

..(1.54)

..(1.55a)

..(1.55D)

ds may generally be

.(1.57)

where dSis the area of the surface elementand &, is a unit vector normal to the surface dS (and directed

away) from the volume if dSis part of the surface describing a volume). If we consider surface ABCD in figure 1.10,

for example, gs = dydza, whereas for surface PQRS, g5 = —dydza, because &, = -a, is normal to PQRS.

Remember: What we have to remember at all imes about differential elements is di and how to get gg and

dvfrom it. Once dl is remembered, dS and dv can easily be found.
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Cylindrical Coordinates
From figure 1.12, we notice that:

1. Differential displacement is given by:
dl = dpg, +pdog, + dza, ...(1.58)
2. Differential normal area is given by:
pdodza,
ds = {dpdza, ..(1.59)
pdodpa,
3. Differential volume is given by:
av = pdpddpdz ...(1.60)
z
/ dp z
P ) T
/ "i P 5 ~dz |
\ z T _______ \‘1::\\\ dp
c P z+dz | \‘1::\::\:\ /
A
l : . y
y e
a,/ ? L pdd
o ¢ >t
/ O+ do |
x a p+dp
X
(a) (b)
pdo a v
dz
dz pdo
a, dp dp
(@) (b) (c)
/ '
P
Figure 1.12:(a) (b)Differential elements in cylindrical coordinates
(c) Differential normal areas in cylindrical coordinates
Spherical Coordinates
From figure 1.13, we notice that:
1. Differential displacement is given by:
di = arg, +rabg, +rsinedopa, ..(1.61)
2. Differential normal area is given by:
r? sinab doa,
gs = 1rsinedrdopa, ..(1.62)
rardea,
3. Differential volume is given by:
dv = rPsin 0 dr dd do ...(1.63)
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z rsin 6do rsin 6d¢ 8
z a,
z
pdd = rsin 6 do r@ gdr
rdo a rdo ar
(a) (b) (c)
y y

rsin 6dg

(a) (b) (c)
Figure. 1.13:(a) (b) Differential elements in spherical coordinates.
(c) Differential normal areas in spherical coordinates
For easy reference, the differential length, surface, and volume elements for the three coordinate systems
are summarized in Table 1.1.
Table 1.1 : Differential elemnts of length, surface, and volume in the rectangular, cylindrical,
and spherical coordinate systems

Coordinate system

Differential | Rectangular
elements | (Cartesian) Cylindrical Spherical
Length di dx 5: dp 5; dr:a;
+dx i; +pdo 5; +r do a,
*dz a, +dz @, +rsin © do a,
Surface ds dydza, pdo dz 55 risin0 do 3,
*dv dz 8y +dp dz a, +r drsin 0 d a,
ravdy g, pdp do &, +rdr doa,
Volume dv dx dy dz pdp do dz r2drsin 6 do db

Consider the object shown in figure below. Calculate:

z

1. The distance BC.

2. The distance CD. D (5,0, 10) ’

3. The surface area ABCD.

C (0,5, 10)

4. The surface area ABO.

5. The surface area AOFD.

6. The volume ABDCFO. —

X
Solution : A(5,0,0)

Although points A, B, C and D are given in cartesian coordinates, it is obvious that the object has
cylindrical symmentry. Hence, we solve the problem in cylindrical coordinates. The points are transformed
from cartesian to cylindrical coordinates as follows:
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1. Along BC, dl = dz; hence,
10
BC= [ di=|[ az=10
2. Along CD, di = pdp and p =5, so
/2
D= [) pdo =50 =25
3. For ABCD, dS = pdodz, p = 5. Hence

area ABCD = [ ds=["?

10 /2 10
o fzzopd¢dz = 5L:[=0 do Izzodz =25n

4. For ABO, dS = pdpdp and z = 0, so
/2 (5 n2 5
area ABO = [, | pdodp = do] 'pdp=6.25n
5. For AOFD, dS = dpdzand ¢ = 0°, so
5 10
area AOFD = fp:OLO dpdz =50
6. For volume ABDCFO, dv = pdd dz dp

ve dv:jfzoj"’zj;fopdq)dzdp: j;oafzf”’2

5
o o abf pdp =625m

1.3.3 Line, Surface, and Volume Integrals

Line Integral

The familiar concept of integration will now be extended to cases when the integrand involves a vector.
By a line we mean the path along a curve in space. We shall use terms such as line, curve, and contour
interchangeably.

The line integral J‘L Adi is the integral of the tangential component of 4 along curve L.

Given a vector field 4 and a curve L, we define the integral as the line
integral of 4 around L (see figure 1.14):

[A-di = [lAlosodt  -(164)
L

If the path of integration is a closed curve such as abca in figure 1.15,
precedent equation becomes a closed contour integral.

7.3
L

(T
( 65) path L

Which is called the circulation of A around L. Figure 1.14: Path of integration of

vector field A.
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