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Preface

Over the period of time the GATE and ESE examination have
become more challenging due to increasing number of
candidates. Though every candidate has ability to succeed
but competitive environment, in-depth knowledge, quality
guidance and good source of study is required to achieve

high level goals. B. Singh (Ex. IES)

The new edition of Engineering Mathematics for GATE 2021 and ESE 2021 Prelims has been fully

revised, updated and edited. The whole book has been divided into topicwise sections.

| have true desire to serve student community by way of providing good source of study and
quality guidance. | hope this book will be proved an important tool to succeed in GATE and ESE

examination. Any suggestions from the readers for the improvement of this book are most welcome.

B. Singh (Ex. IES)
Chairman and Managing Director

MADE EASY Group
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Linear Algebra

1.1 Introduction

In this chapter, we shall discuss matrix algebra and its use in solving linear system of algebraic
equations AX = B and in solving the Eigen value problem AX = AX.

1.2 Algebra of Matrices

1.2.1 Definition of Matrix

A system of mx nnumbers arranged in the form of a rectangular array having m rows and n columns is
called an matrix of order mx n.

If A= [ezl./.]mx , be any matrix of order mx nthen it is written in the form:
a1*| a<|2 ............... a1n
321 822 ............... aZn
A=[8lmen = | = e
B pppeeereeveeenns am |

Horizontal lines are called rows and vertical lines are called columns.

1.2.2 Special Types of Matrices

1. Square Matrix: An mx nmatrix for which m = n(The number of rows is equal to number of columns) is
called square matrix. It is also called an n-rowed square matrix. i.e. A = [azl.j]nX . The elements
a, | i=jie. a,, ay,.. are called DIAGONAL ELEMENTS and the line along which they lie is called
PRINCIPLE DIAGONAL of matrix. Elements other than a,,, a,,, etc are called off-diagonal elements

le.a;liz)
1.2 3
Example:A= |4 5 6 is a square Matrix
9 8 3 3 x 3
NOTE A square sub-matrix of a square matrix A is called a “principle sub-matrix” if its diagonal

1 2
elements are also the diagonal elements of the matrix A. So L 5} is a principle sub matrix of

2 3
the matrix A given above, but {5 6} is not.

2. Diagonal Matrix: A square matrix in which all off-diagonal elements are zero is called a diagonal

gy = O if i#/J
matrix. The diagonal elements may or may not be zero.

ay

;o if 0=
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300
Example: A= |0 5 0] is adiagonal matrix
0 0 9
The above matrix can also be written as A = diag [3, 5, 9]

Properties of Diagonal Matrix:

diag [x, v, zZ) + diag [p, g, r] =diag [x + p, y + q, Z + 1]
diag [x, y, z] x diag [p, g, ] = diag [xp, yq, zr]

(diag [x, y, z])"! = diag [1/x, 1/y, 1/Z]

(diag [x, y, Z])" = diag [x, y, 2]

(diag [x, y, 2])" = diag [x", ¥, 2]

Eigen values of diag [x, y, zZ] = x, yand z

Determinant of diag [x, v, z] = | diag [x, y, Z] | = xyz

Scalar Matrix: A scalar matrix is a diagonal matrix with all diagonal elements being equal.

g =0 if i#]
{a,]-:k if i=]
300
Example: A= |0 3 0] is a scalar matrix.
0 0 3

Unit Matrix or Identity Matrix: A square matrix each of whose diagonal elements is 1 and each of
whose non-diagonal elements are zero is called unit matrix or an identity matrix which is denoted by 1.
Identity matrix is always square.

g =0 if i#]

Thus a square matrix A = [al.j] is a unit matrix if a;= 1wheni=jand a;= Owheni#j. g =1 if i=]
;= =

0 1

o 4 O

1 0 10
Example: 7, = | 0 0| is unit matrix, 1, = [ } )
0 1

Properties of Identity Matrix:
(a) Iis Identity element for multiplication, so it is called multiplicative identity.
(b)y AI=TA=A

() I"=1

dy 1-'=1

) |1l =1

Null Matrix: The m x n matrix whose elements are all zero is called null matrix.
Null matrix is denoted by O. Null matrix need not be square. a;= OV ij

00O
Example: O, = |0 O 0}, O, = B 8} O, = [8}
00O

Properties of Null Matrix:
@ A+O0=0+A=A

So, O is additive identity.
b)) A+ (-A)=0
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10.

11.

12.

13.

Upper Triangular Matrix: An upper triangular matrix is a square matrix whose lower off-diagonal elements
are zero, i.e. a; = 0 whenever i > |
It is denoted by U.

, _ gy = 0 if i>j
The diagonal and upper off diagonal elements may or may not be zero. . ,
a,]- I i< /
3 5 -1
Example: U=|0 5 6
00 2

Lower Triangular Matrix: A lower triangular matrix is a square matrix whose upper off-diagonal triangular
elements are zero, i.e. a;= O wheneveri < j. The diagonal and lower off-diagonal elements may or may

notbe zero. {g; =0 if i<}

It is denoted by L,

1 00
Example: L. = |-1 5 O
2 3 6
Idempotent Matrix: A matrix A is called Idempotent if A% = A.
10100 % 2 ,
Example: o 1l'lo ol -1 38 4 | are examples of Idempotent matrices.
1 -2 -3

Involuntary Matrix: A matrix A is called Involutory if A2 = 1.

10 4 3 3
Example: [O J is involuntary. Also | =1 0 -1/ is involuntary since A? = I.
-4 -4 -3

Nilpotent Matrix: A matrix A is said to be nilpotent of class x or index x if A= Oand A*- 1= Qi.e. x
is the smallest index which makes A* = O.

1 1 3
Example:The matrix A= | 5 2 6 | is nilpotent class 3, since A= 0 and A2z 0, but A3 = 0.
-2 -1 -3

Singular matrix: If the determinant of a matrix is zero, then matrix is called as singular matrix.

1 2
A=oes|] o]

*If determinant is not zero, then matrix is known as non-singular matrix.
If matrix is singular then its inverse doesn’t exist.

Row Matrix: A matrix with only one row is called as Row Matrix. A row matrix can have any number of
columns i.e., it has an order 1 x nwhere ne natural number.

Example: (i) [1,2,-7,0, 4]is arow matrix of order 1 x 5.
(i) [3,0,-5]is arow matrix of order 1 x 3

Column Matrix: A matrix with only one column is called as column matrix. A column matrix can have
any number of rows i.e., it has an order m x 1 where m € natural number.
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1 1

Example: (i) |-3| isacolumn matrix of order 3 x 1. (ii) 7 | is a column matrix of order 2 x 1.

0 3

1.2.3 Equality of Two Matrices

Two matrices A = [a,./.] and B = [b,.j] are said to be equal if,

1.
2.

They are of same size.

The elements in the corresponding places of two matrices are the same i.e., a;= bij for each pair of
subscripts i and /.

x—-y p+qg 2 5
Example: Let {p—q x+y} = L 10}

Thenx-y=2 p+qg=5p-g=1andx+y=10
= x=6,y=4,p=38andg=2.

1.2.4 Addition of Matrices
Two matrices A and B are compatible for addition only if they both have exactly the same size say
mx n. Then their sum is defined to be the matrix of the type mx n obtained by adding corresponding elements of

Aand B.Thus if, A=[a],,. , & B=[b,]

mxnthen A+ B=1[a;+ bl .

5

— T

7 8

1 2] [4 6 5 8
A+B=13 5|77 8| =1|10 13

Properties of Matrix Addition:

1.
2.
3.

6.

Matrix addition is commutative A + B= B + A.

Matrix addition is associative (A+ B) + C=A+ (B+ C)

Existence of additive identity: If O be m x n matrix each of whose elements are zero. Then,
A+ O=A= 0O+ Aforevery mx nmatrix A.

Existence of additive inverse: Let A :[azl.j]mX o

Then the negative of matrix A is defined as matrix [-a and is denoted by —A.

]

idmxn

= Matrix —A is additive inverse of A. Because (-A) + A= O = A + (-A). Here O is null matrix of
order mx n.

Cancellation laws holds good in case of addition of matrices of same order.

A+ X=B+X=>A=8B

X+A=X+B=>A=8

Example: Let A, B, C are matrices of same order i.e., mx nthen, A+ B= A + Cholds only if B= C.
The equation A + X = 0 has a unique solution in the set of all m x n matrices.

1.2.5 Substraction of Two Matrices

If Aand B are two mx nmatrices, then we define, A— B=A + (-B).

Thus the difference A— Bis obtained by subtracting from each element of A corresponding elements of B.

NOTE: Subtraction of matrices is neither commutative nor associative.
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Previous GATE and ESE Questions

Q.1

Q.2

Q.3

Q.4

Q.5

4 2 13
GivenMatrix[A]= |6 3 4 7|, therankofthe
o 2 10 1
matrix is
(a) 4 (b) 3
(c) 2 (d) 1

[CE, GATE-2003, 1 mark]

Consider the system of simultaneous equations
X+2y+z=6
2X+y+2z=06
x+y+z=5
This system has
(@) unique solution
(b) infinite number of solutions
(c) no solution
(d) exactly two solutions
[ME, GATE-2003, 2 marks]

Consider the following system of linear equations

2 1 4 ||«x o

4 3 12||y|=|5

12 8|z 7
Notice that the second and the third columns of
the coefficient matrix are linearly dependent. For
how many values of a, does this system of
equations have infinitely many solutions?
(@ 0 (b) 1
(c) 2 (d) infinitely many

[CS, GATE-2003, 2 marks]

For the matrix ﬁ H the eigen values are

(@) 3and -3
(c) 3and5

(b) -3and -5
(d) 5and 0
[ME, GATE-2003, 1 mark]

For which value of x will the matrix given below
become singular?

8 x O

4 0 2

12 6 0O
(a) 4 (b) 6
(c) 8 (d) 12

[ME, GATE-2004, 2 marks]

Q.6

Q.7

Q.8

Let A, B, C, D be nx nmatrices, each with non-
zero determinant, If ABCD = I, then B~" is
(@ DT CTAT
(b) CDA
(c) ADC
(d) does not necessarily exist
[CS, GATE-2004, 1 mark]

How many solutions does the following system
of linear equations have?

—x +5y=-1 x—-y=2 x+3y=3
(@) infinitely many (b) two distinct solutions
(c) unique (d) none

[CS, GATE-2004, 2 marks]

4 -2
The eigen values of the matrix [_2 1 }

(@) are 1and 4
(c) are0and5

(b) are-1and 2
(d) cannot be determined
[CE, GATE-2004, 2 marks]

The sum of the eigen values of the matrix given
12 3

belowis |1 5 1]
3 11

(@ 5
() 9

(b) 7
(d) 18
[ME, GATE-2004, 1 mark]

Q.10 Consider the matrices X, , 5, Y4, 3 @nd Py, 5.

The order of [P(XTY)~1 PT]7will be
(@ (2x2) (b) B3x3)
(€) (4x3) (d) B3x4)
[CE, GATE-2005, 1 mark]

Q.11 Given an orthogonal matrix

11 1A

a1 T 1A [AAT] is
1 10 0
00 1 -1
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1. (c)
Consider first 3 x 3 minors, since maximum
possible rank is 3

4 2 1
6 3 4| =0
2 10
2 13
34 7/=0
10 1
4 1 3
6 4 7,=0
2 01
4 2 3
and 6 37| =0
2 1 1
Since all 3 x 3minors are zero, now try 2 x 2 minors.
4 2
‘6 3| =0
2 1
‘3 4| =8-3=5#0
So, rank = 2
2. (o)
Given equation are
X+2y+z=6
2x+y+2z=6

xX+y+z=5
Given system can be written as

12 1|« 6
2 1 2||lyl=16
11 1|z 5
12 1|6
Augmented matrixis |2 1 2|6
11 1|5
By gauss elimination
1 2 1|6 1 2 1|6
2 1 2/6| —rZ— |0 -3 0|-6
11 1|5 0 -1 0f-1
- 1h, 1 2 1|6
—3 5|0 -3 0|-6
0O 0 Off

rnA) =2
r(AlB) =
Since the rank of coefficient matrix is 2 and rank of
argument matrix is 3, which is not equal. Hence
system has no solution i.e. system is inconsistent.

(b)

The augmented matrix for the given system is
(2 1 -4«

4 3 -12|5]

|12 -8\7

Performing Gauss-Elimination on the above matrix
(2 1 -4 a

4 3 -12 5-2a

12 -8 7-0/2

o 2 1 -4
R, - 2R

5 /?32-1/2;?1 >0 1 -4

7 10 3/2 -6

2 1 -4 «
— =82k 10 1 —4|5-2a

00 O |bu-1
2
Now for infinite solution it is necessary that at
least one row must be completely zero.

500 -1
2

=0

o = 1/5 is the solution
. There is only one value of o for which infinite
solution exists.

(c)
Now, A=A =
Where k eigen value
1
1

~A2-1=0
or, (4- k) ()2:0
o, (4-h+1)(4-r-1)=
o, (5-1)(3-A)=0

A=3,A=5
(a)
8 x O
For singularity of matrix = | 4 0 2| =0
12 6 0

= 8(0-12)- x(0-2x12)=0
: x=4
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13. (a) Since Rank ([A | B]) = Rank ([A]) = number of
[AA =1 variables. The system has unique solution.
. [2 —0.1“1/2 a} _ {1 o} 17. (a)
0 3 0 b 0 1 First solve for eigen values by solving
1 2a-0.1b 10 characteristic equation |A-nI] =0
- o s | {o 1} 5-» 0 0 0
0.1b . Al = 0 5-A\ 5 0 -0
= 28—0.1b=0:>a=7 (I) | | 0 0 2_ 1
b 1o 1 0 0 3 1-A
sb=1= -3 =0B-MNBG-M[2-1)(1-A1)-3]
Now substitute b in equation (i), we get =0
1 =5-MB-A)K-31-1)=0
a= —
60 w5 3EV18
So, a+b= i+l 2
60 3 puti =5in[A-A]X=0
_1+20 21 7 5-5 0 0 0 ][x 0
60 60 20 0 5-5 5 0 [|x| |0
14. (b) 0 0 2-5 1 x3| |0
(A p) < min(m, n) 0 0 3 1-5]]|x, 0
So, Highest possible rank = Least value of 3and 4. 00 0 0O 0
i.e. highest possible rank (based on size of A) =3 *
However if the rank of A = 3 then rank of [A| B] — 00 5 0|x _ 0
also would be 3, which means the system would 00 83 1]]|x 0
become consistent. But it is given that the system 0 0 3 —4||x 10
is inconsistent. So the maximum rank of A could = 5x;=0; -3x3+x,=0; 3xg3—4x,=0
only be 2. Solving which we get x, = 0, x, = 0, x, and x,
15. (a) may be anything.
Rank [Pg] = Rank [P] is necessary for existence Th? eigen vector corresponding to A = 5, may be
of at least one solution to Px = q. written as
k
16. (b) i .
The augmented matrix for the given system is X, = Yo _| "
(2 -1 3|1 *s 8
3 -2 5|2|. T4
where k,, k, may be any real number. Since
-1 -4 1|3 , n2 o ,
- - . choice (a) is the only matrix in this form with both
Using gauss-elimination method on above matrix xyandx, = 0, so it is the correct answer.
v_ve get, Since, we already got a correct eigen vector, there
2 -1 3|1 R 2 -1 31 is no need to derive the eigen vector
3 -2 5|2|—=2"5/0 /2 1/2]1/2 dina 1o 3, < 313
—1 -4 (3] ®" |0 -2 5/2|7/2 corresponding 10 A =——5—
2 -1 3|1 18. (d)
_ B9 1o _q/2 1/2]1/2 Since matrix is triangular, the eigen values are

0O O -2 | -1
Rank ([AlB]) =3
Rank ([A]) = 3

the diagonal elements themselves namely
A =3, -2 and 1. Corresponding to eigen value,
A = -2 let us find the eigen vector
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