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CHAPTER

Vector Analysis

1.1 Introduction

This introductory chapter provides an elegant mathematical language in which electromagnetic (EM)
theory is conveniently expressed and best understood. The quantities of interest appearing in the study of EM
theory can almost be classified as either a scalar or a vector.

Quantities that can be described by a magnitude alone are called scalars. Distance, temperature, mass
etc. are examples of scalar quantities. Other quantities, called vectors, require both a magnitude and a direction
to fully characterize them. Examples of vector quantities include velocity, force, acceleration etc.

In electromagnetics, we frequently use the concept of a field. A field is a function that assigns a particular
physical quantity to every point in aregion. In general, a field varies with both position and time. There are scalar
fields and vector fields. Temperature distribution in a room and electric potential are examples of scalar fields.
Electric field and magnetic flux density are examples of vector fields.

NOTE: Vectors are denoted by an arrow over a letter ( 4 ) and scalars are denoted by simple letter (A).
1.1.1 UnitVector
A unit vector 4, along 4 is defined as a vector whose magnitude is unity (i.e., 1) and its direction is

along 4, thatis

) A A

A A -
Thus we can write 4 as

A = Ady= [Aa, (1.2)

Remember: Any vector can be written as product of its magnitude and its unit vector.
1.1.2 Vector Addition and Subtraction
Two vectors 4 and B can be added together to give another vector C ; that is,

C = A+B -(1.3)
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Figure. 1.1: Vector addition (a) parallelogram rule, (b) head-to-tail rule.

NOTE " A+B=B+A (Commutative law)
A+B)+C=A+(B+C) (Associative law)

s}

Vector subtraction is similarly carried out as
D = A-B=A+(-B) ..(1.4)

Remember: Graphically, vector addition and subtraction are obtained by either the parallelogram rule or the
head-to-tail rule as potrayed in figure 1.1.

NOTE s Kk(A+B)=KA+kB (Distributive law)
A+B 15 13
[ ] k _FA-’-?B

1.1.3 Position and Distance Vectors:
A point Pin cartesian coordinates may be represented by (x, y, 2).
The position vector ?p (or radius vector) of point Pis defined as the directed distance from origin Oto P.

fp = xa,+ya,+za, ..(1.5)
V4
Pk y 2)
X

Figure 1.2:lllustration of position vector T, = xa, + ya, + za, z
The distance vector is the displacement from one point to another. .
Consider point P with position vector Fp and point Q with position * - - [ ¢ ,
vector E . The displacement from Pto Q is written as x%
Bro = ‘r’q —Fp (1.6) Figure 1.3: Vector distance ﬁpo
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m Point P and Q are located at (0, 2, 4) and (-3, 1, 5). Calculate:

(a) The position vector P

(b) The distance vector from Pto Q

(c) The distance between Pand Q

(d) A vector parallel to PQ with magnitude of 10.

Solution:

(a) Iy = 04,+2a,+4a, = 24, +44,

(b) Rra = I4=1, =(-3,1,5)-(0,2,4) = (-3,-1, 1)
= -33,-4a,+a,

(c) The distance between Pand Q is the magnitude of Rpq ; that is

(d)

d = |Rpal=+9+1+1=3.317

Let the required vector be A, then

where A = 10 is magnitude of A

and a, = fira _, (311

[Real 3.317

then A = iM
3.317

= +(-9.0454, -3.0158, + 3.0154,)

1.1.4 Vector Multiplication

When two vectors are multiplied, the result is either a scalar or a vector depending on how they are
multiplied. Thus there are two types of vector multiplication.

1.
2.

Scalar (or dot) product: A - B

Vector (or cross) product : Ax B

Multiplication or three vectors A, B, C can result in either

3.
4.

Scaler triple product : A . (BxC)
Vector triple product : A x (B x C)

Dot Product:

The dot product, or the scalar product of two vectors A and B, written as A . B is defined geometrically

as the product of the magnitudes of A and B and the cosine of the angle between them.

Thus

A-B = ABcos 6,

L(1.7)

Where 6,5 is the smaller angle between A and B. The resultof A. B is called either the scalar product
because it is scalar, or the dot product due to the dot sign.

If
and

then

(AL A,,A,)
(B..B,.B.)
AB, +A B+ A,B,

W W@ >
I

.(1.8)
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Example 1.9 If A= ép + éq) + a,, the value of 95/3 . dI around the closed circular quadrant
shown in the given figure is
_Q y
2
X
ud
¥ D)2
O | 2 | k z
Solution:
$A-d = (&, + &, + &,).(pé, + pdod, + dza,)
— — 2
For path OP 4)A~ a = -[0 ap=2
o /2
For path PQ $A-dl = [“pdo=2xT=n
— — O
For path QO cf)A.d] = Jz ap=-2

4)/10’7 = 2 m 2=

Surface Integral
Another integral that will be encountered in the study of electromagnetic fields is the surface intetgral.

Given a vector field A, continuous in a region containing the smooth surface S, we define the surface integral or

the flux of A through S (see figure 1.15)
y = [ JAcose aS=[ A-4,dS .(1.66)

Orsimply = sz-dS ..(1.67)

Where, at any pointon S, &, is the unit normal to S. For a

closed surface (defining a volume), precedent equation
becomes:

R Figure 1.15: The flux of a vector field
V= 95’4' as -(1.68) A throughsurfaces.
S

Which is referred to as the net outward flux of A from S.

NOTE: Notice that a closed path defines an open surface whereas a closed surface defines a volume.

Volume Integral

Finally, we will encounter various volume integrals of scalar quantities, such as a volume charge density
p,- A typical integration would involve the computation of the total charge if the volume charge density was
known. It is written as:

Q= [p, av .(1.69)
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CHAPTER

Magnetostatics

3.1 Introduction

According to Coulomb’s law, a distribution of stationary charge produces a static electric field (electrostatic
field). The analogous equation to Coulomb’s law in electrostatics is the Biot-Savart law in magnetostatics. The
Biot-Savart law shows that when charge moves at a constant rate (direct current - DC), a static magnetic field
(magnetostatic field) is produced.

NOTE : A magnetostatic field is produced by a constant current flow (or direct current).

Static magnetic field are also produced by stationary permanent magnets. When permanent magnets
are set in motion such that a time varying magnetic field is produced, a time varying electric field is simultaneously
produced. A time varying electric field cannot exist without a corresponding time varying magnetic field and vice
versa.

Table 3.1 shows the analogy between electric and magnetic field quantities. Some of the magnetic field
quantities will be introduced later in this chapter. The analogy is presented here to show that most of the equations
we have derived for the electric fields may be readily used to obtain corresponding equations for magnetic field
if the equivalent analogous quantities are used.

Term Electric Magnetic
. . QQs . L poldi x4
B | = 1223 dB = —/———7"
asic laws = ame2 =
j Ddé B Qenc IHdi — Ienc
Force law F = QF F = QVxB)
Source element aqQ 1al
%
Field intensity E= 7(V/m) H = n (A/m)
: A4 2 v 2
Flux density D= S (C/m=) B = 5 (Wb/m?)
Relationship between field D = ¢E B = uH

E Theory with Solved Examples MADE ERSY www.madeeasypublications.org)
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Potentials E=_vv H = VvV, (H=0)
p.al = el
V= I4n8, A= J4nR
Flux V= ID-dS v = IB-d§
y=Q=CV vy = LI
av al
=% V=t
, 1. - 1= -
Energy density We = ED-E W, = EB'H
Poisson’s equation V2 = _p?v VA = —ud

Table 3.1: Analogy beteen electric and magnetic fields.

3.2 Biot-Savart’s Law

The source of the steady magnetic field may be a permanent magnet, an electric field changing linearly
with time, or a direct current. We shall largely ignore the permanent magnet and save the time-varying electric
field for a later discussion. Our present relationships will concern the magnetic field produced by a differential dc
elementin free space.

Biot-Savart’s law states that the magnetic field intensity dH produced at a point P, as shown in
figure 3.1, by the differential current element Id!l is proportional to the product 7dl and the sine of the
angle a between the element and the line joining P to the element and is inversely proportional to the
square to the distance R between P and the element.

Idlsino
The unit of magnetic field intensity H is evidently amperes
per meter (A/m).

That is aH .(3.1)

y
The constant of proportionality is equal to i Thus, from

the definition of the cross product we can write

. Idlxag IdI xR dH (inward)
dH = 5= 3 ..(8.2) X L
4R 4R Figure 3.1: Magnetic field dH at P due
> to current element Idl.

- . R o ~
where R = ‘H" and ag = E.Thusthe direction of gH canbe

determined by the right-hand rule with the right-hand thumb pointing in the direction of the current, the right-hand
fingers encircling the wire in the direction of gH as shown in figure 3.2 (a). Alternatively, we can use the right-

handed screw rule to determine the direction of dH : with the screw placed along the wire and pointed in the
direction of current flow, the direction of advance of the screw is the direction of dH as in figure 3.2 (b).
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CHAPTER

Transmission Lines

6.1 Introduction

Transmission lines may be defined as devices used to guide energy from one point to another (from a
source to a load). Transmission lines can consist of a set of conductors, dielectrics or combination thereof.
Transmission lines are normally used in power distribution at low frequencies and in communications at high
frequencies.

In the last chapter, we have shown that using Maxwell’s equations, we can transmit energy in the form of
an unguided wave (plane wave) through space. In a similar manner, Maxwell’s equations show that we can
transmit energy in the form of a guided wave on a transmission line.

NOTE : Plane wave propagation in air: Unguided wave propagation

Transmission Lines: Guided wave propagation

6.1.1 Transmission Lines Examples

(a) Two-wire line (twisted pair is a variation of the two-wire line)

(b) Coaxial line

o

(c) Parallel plate or planar line

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples E
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(d) Stripline

(e) Microstrip line

% (f) Wire above conducting plane

Figure. 6.1: Transmission line types

m Parallel - wire line is used where balanced properties are required (example: in
connecting a folded dipole antenna to a TV receiver).
é m Coaxial line is used when unbalanced properties are required (Example: in connecting
a broadcast transmitter to its grounded antenna).
6.1.2 Transmission Lines Definitions

Uniform Transmission Line: Conductors and dielectrics maintain the same cross-sectional geometry
along the transmission line in the direction of wave propagation.

NOTE : Most of the transmission lines have this type of geometry (e.g. Two wire coaxial etc.)

Transmission Line Mode: A distinct pattern of electric and magnetic field induced on a transmission
line under source excitation.

NOTE : Throughoutthe chapter we assume TEM mode of wave propagation.

6.2 Transmission Line Equations

Transmission line are typically electrically long (several wavelengths) such that we cannot accurately
describe the voltages and currents along the transmission line using a simple lumped-element equivalent circuit.
We must use a distributed-element equivalent circuit which describes each short segment of the transmission
line by a lumped-element equivalent circuit.

Consider a simple uniform two-wire transmission line with its conductors parallel to the z-axis as shown below.

Uniform Transmission Line: Conductors and insulating medium maintain the same cross-sectional

geometry along the entire transmission line.
Az

AN

(. & 0) Load

)
1
z z+Az

Figure 6.2: Transmission line connecting source to aload
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6.3 Transmission Line Circuit (Input impedance, Reflection coefficient, SWR)

The most commonly encountered transmission line configuration is the simple connection of a source
(or generator) to a load (Z,) through the transmission line. The generator is characterized by a propagation
constant yand characteristic impedance Z,. In this section we will determine the input impedance, the standing
wave ratio (SWR), and the power flow on the line.

6.3.1 Inputimpedance(Z,)

Consider a transmission line of length /, characterized by y and Z,, connected to a load Z, as shown in
figure (6.6). Looking into the line, the generator sees the line with the load as an input impedance Z,.

Let the transmission line extend from z = O at the generator to z =/ at the load. The voltage and current

waves are:

V(2) = e ¥+ e? ..(6.52)
dL —YZ VO_ YZ

I1(2) = 709 —709 ..(6.53)

Tofind \fj and \fj , the terminal conditions must be given.

I'=l-z

% Il z | 7
— ] I— —— lo .
+ — I *
I
+ +
Z . Z)
Vg<~> in ¥ 4o —Z, Z H v, v, <~> V H Z,

@) z=1 (b)

Figure 6.6: (a) Inputimpedance due to a line terminated by a load.
(b) Equivalent circuit for finding V,and 1, in terms of Z, at theinput.
If we are given the conditions at the input,
Vo=WUz=0),1,=1(z=0) ...(6.54)
substituting these into equations (6.52) and (6.53) results in

1

W = E(Vo+zolo) ...(6.55)
1

Vo = E(Vo_zolo) ...(6.56)

If the input impedance at the input terminals is Z,, the input voltage V;; and the input current /, are easily
obtained from figure (6.6 b) as

Z, V.
_ Ly, lg=—9__
©TZez, 0 Tz, ~een
On the other hand, if we are given the conditions at the load, say
Vi=Wz=0,1=1z=1) ...(6.58)
Substituting these into equations (6.23) and (6.24) gives
= S+ 216" (659)
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Vs = %(VL _Zy1)e™ .(6.60)
: N _VYs(2) . .
Next, we determine the input impedance £j, = m at any point on the line. At the generator, for example,
S
equations (6.23) and (6.24) yield
Vy(2) _ Zo\Vy +Vy)

%= 1) V-V ..(6.61)
substituting equations (6.59, 6.60) into (6.61) and utilizing the fact that
e' +e gl —g?
———— = coshyl, ————=-sInmyl
2 I 2 e
,_ sinmd_ e’ —e 560
o tan fr = coshyl e¥+e™" -(6.62)
we get, 7 = z |4t Lotanmil g oq .(6.63)
n | Zo + Z, tanhyl
Note:
= For alossless line, y=j B, tan hj B/ = jtanP/, so equation (6.63) becomes
[ Z, + jZ, tanpl
Z = Zy| =0 | (lossless ..(6.64
n O_ZO+/ZLtanBl] { ) (6.64)

= The quantity B/ in equation (6.64) is usually referred to as the electrical length of the line and can be
expressed in degrees or radians.

6.3.2 Reflection Coefficient (I')
We now define T, as the voltage reflection coefficient (at the load). The reflection coefficient ', is the
ratio of the voltage reflection wave to the incident wave at the load, that is,
vy e

re e (6.65)

Substituting V¢, and ;' from equations (6.59, 6.60) into equation (6.65) and incorporating V, = Z, I, gives,
)
Iz + 2,
The voltage reflection coefficient at any point on the line is the ratio of the reflected voltage wave to
that of the incident wave.

...(6.66)

474

-y _
Vo e _ Vo o2
+ Y2 +

Vi e Vo

But z=/-I". Substituting and combining with equation (6.65) we get,

That is, I(2) =

I(2) = Yo gon geir _ r, e?" ..(6.67)
V+
0
The current reflection coefficient at any point on the line is the negative of the voltage reflection
coefficient at that point.
Then, the current reflection coefficient at the load is
I; e
15 e

T, ...(6.68)
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6.3.3 Standing Wave Ratio (s)

Vix) = Ve +1,|T] e e = Vel +v, || &P (6.69)

Asiny, + Bsiny,

The amplitude plot in a single harmonic mathced line has straight line plot as the amplitude is

same everywhere.

But for a miss matched line the amplitude plot is not the same everywhere. It has periodic maximas

and minimas due to additions and cancellations and hence the distribution is non uniform.

Positions of voltage maximas and impedance maxima also position of current of current minimas.
2PBx = 2N+ 0

Positions of voltage minima and impedance minima also position of current of current maximas.
2Bx = (2n+ 1) +06

The amplitude plot of two harmonics travelling in opposite directions having interference having

maxima and minima formation is called as standing wave formation.

The gap between two consecutive maximas or minimas is A/2 as 2Bx is periodic with 2mw, x is

periodic with A/2.

In current standing as identical pattern to that of voltage maxima coninsides with current minima

and vice versa.

Asthe load is Z, the loading effect anywhere on the line leads to periodic impedance maximas and

impedance minimas such that where ever impedance is minima current is maxima hence,

Ve, _ Y

min

max

|1 |

W)

| v |

|10 |
V(x)

Figure6.7

Standing wave ratio SWR = Current SWR or voltage SWR

Vmax Imax _V0+V0|F|

SWR = |7, (or) I |~ Vo =W| T ..(6.70)
14| T| _ SWR-1

SwWR = 377 O 7= SR
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