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Preface
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guidance and good source of study is required to achieve

high level goals. B. Singh (Ex. IES)

The new edition of Engineering Mathematics for GATE 2019 and ESE 2019 Prelims has been fully

revised, updated and edited. The whole book has been divided into topicwise sections.

| have true desire to serve student community by way of providing good source of study and
quality guidance. | hope this book will be proved an important tool to succeed in GATE and ESE

examination. Any suggestions from the readers for the improvement of this book are most welcome.

B. Singh (Ex. IES)
Chairman and Managing Director

MADE EASY Group
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Linear Algebra

1.1 Introduction

Linear Algebra is a branch of mathematics concerned with the study of vectors, with families of vectors
called vector spaces or linear spaces and with functions that input one vector and output another, according to
certain rules. These functions are called linear maps or linear transformations and are often represented by matrices.
Matrices are rectangular arrays of numbers or symbols and matrix algebra or linear algebra provides the rules
defining the operations that can be formed on such an object.

Linear Algebra and matrix theory occupy an important place in modern mathematics and has applications
in almost all branches of engineering and physical sciences. An elementary application of linear algebra is to the
solution of a system of linear equations in several unknowns, which often result when linear mathematical models
are constructed to represent physical problems. Nonlinear models can often be approximated by linear ones.
Other applications can be found in computer graphics and in numerical methods.

In this chapter, we shall discuss matrix algebra and its use in solving linear system of algebraic
equations AX = B and in solving the Eigen value problem AX = AX.

1.2 Algebra of Matrices

1.2.1 Definition of Matrix

A system of m x n numbers arranged in the form of a rectangular array having m rows and n columns is
called an matrix of order mx n.

If A= [azl./.]mx , be any matrix of order mx nthen it is written in the form:
811 a12 ............... a1n
o1 opeeiiiniinnniis op
A= [al.j]mxn = | e
B B, am |

Horizontal lines are called rows and vertical lines are called columns.

1.2.2 Special Types of Matrices

1. Square Matrix: An mx nmatrix for which m = n(The number of rows is equal to number of columns) is
called square matrix. It is also called an n-rowed square matrix. i.e. A = [azl.j]”X - The elements
a, | i=jie. a,, ay,.. are called DIAGONAL ELEMENTS and the line along which they lie is called
PRINCIPLE DIAGONAL of matrix. Elements other than a,,, a,,, etc are called off-diagonal elements

le.a;liz]
12 3

Example:A= |4 5 6 is a square Matrix
9 8 3

3 x 3
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NOTE A square sub-matrix of a square matrix A is called a “principle sub-matrix” if its diagonal

1 2
elements are also the diagonal elements of the matrix A. So L 5} is a principle sub matrix of

2 3
the matrix A given above, but {5 6} is not.

2. Diagonal Matrix: A square matrix in which all off-diagonal elements are zero is called a diagonal
a;=0 if i#]

aj

matrix. The diagonal elements may or may not be zero. { it iz
j b=

Example: A =

O O Ww

00
5 0] is a diagonal matrix
0 9

The above matrix can also be written as A = diag [3, 5, 9]

Properties of Diagonal Matrix:

diag [x, v, z] + diag [p, g, r] =diag [x + p, y + q, Z + 1]
diag [x, v, Z] x diag [p, q, r] = diag [xp, yq, zr]

(diag [x, y, Z])' = diag [1/x, 1/y, 1/Z]

(diag [x, y, Z])" = diag [x, y, Z]

(diag [x, y, Z])" = diag [x", y", 2]

Eigen values of diag [x, ¥, Z] = x, yand z

Determinant of diag [x, v, z] = | diag [x, y, Z] | = xyz

3. Scalar Matrix: A scalar matrix is a diagonal matrix with all diagonal elements being equal.

g;=0 if i#]

a,-j=k if i=]
300

Example: A= |0 3 0] is a scalar matrix.
0 0 3

4. Unit Matrix or Identity Matrix: A square matrix each of whose diagonal elements is 1 and each of
whose non-diagonal elements are zero is called unit matrix or an identity matrix which is denoted by 1.
Identity matrix is always square.

aj = O if i=j
Thus a square matrix A = [al.j] is a unit matrix if a;= 1wheni=jand a;= Owheni#j. g =1 if i=]
/’j = =

Example: /; =

O O =
o 4 O

8 is unit matrix, 1, = 1o
] 2o 1|
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Properties of Identity Matrix:
a) [is ldentity element for multiplication, so it is called multiplicative identity.

(

(b) AI=IA=A
() I"=1

d) 1'=1

e 1] =1

5. Null Matrix: The m x n matrix whose elements are all zero is called null matrix.

Null matrix is denoted by O. Null matrix need not be square. a;= OV ij

00 0
Example: O, = , O, = {O O] O, = [O}

o O O
o O O
o O O

Properties of Null Matrix:
@ A+0=0+A=A

So, O is additive identity.
b)) A+(-A) =0

6. UpperTriangular Matrix: An upper triangular matrix is a square matrix whose lower off-diagonal elements
are zero, i.e. a; = 0 wheneveri > j
It is denoted by U.

, _ g;=0 if i>j
The diagonal and upper off diagonal elements may or may not be zero. oo
a,-/ m i</
3 5 -1
Example: U=|0 5 6
00 2

7. LowerTriangular Matrix: A lower triangular matrix is a square matrix whose upper off-diagonal triangular
elements are zero, i.e. a;= Owhenever i < j. The diagonal and lower off-diagonal elements may or may

a,'/' = O If i<j

not be zero.

It is denoted by L,

1 00
Example: L. = |-1 5 O
2 3 6

8. Idempotent Matrix: A matrix A is called [dempotent if A2 = A.
10]700]|% 2 ,
Example: o 1l'lo ol -1 8 4 | are examples of Idempotent matrices.
1 -2 -3

9. Involuntary Matrix: A matrix A is called Involutory if A° = L.

10 4 3 3
Example: [O J is involuntary. Also | =1 0 -1/ is involuntary since A2 = I.
-4 -4 -3
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10. Nilpotent Matrix: A matrix A is said to be nilpotent of class x or index x if A*= Oand A*- 1= QO i.e. x
is the smallest index which makes A* = O.

11 3
Example: The matrix A= | 5 2 6 | is nilpotent class 3, since A # 0 and A% # 0, but A3 = 0.
2 -1 -3

11. Singular matrix: If the determinant of a matrix is zero, then matrix is called as singular matrix.

12
A =0eg. [3 6}

*If determinant is not zero, then matrix is known as non-singular matrix.
If matrix is singular then its inverse doesn'’t exist 3.

1.2.3 Equality of Two Matrices
Two matrices A = [al./.] and B = [b,-/] are said to be equal if,
1. They are of same size.

2.  The elements in the corresponding places of two matrices are the same i.e., a;= bij for each pair of
subscripts i and /.

- + 2 5
Example: Let Ty oprg =

p-q x+y 1 10
Thenx—-y=2,p+qg=5p-g=1andx+y=10
= x=6,y=4,p=38andg=2.

1.2.4 Addition of Matrices

Two matrices A and B are compatible for addition only if they both have exactly the same size say
mx n. Then their sum is defined to be the matrix of the type mx n obtained by adding corresponding elements of
Aand B. Thus if, A= [a,],,, ,& B=[b,] then A+ B=[a;+ b

mxn ifAmxn

Example: A = 12 B = 4 6;
3 5 7 8

1 2 N 4 6 5 8
A+B=13 5|77 8| = |10 13
Properties of Matrix Addition:
1. Matrix addition is commutative A+ B= B + A.

2. Matrix addition is associative (A+ B)+ C=A+ (B+ O)

3. Existence of additive identity: If O be m x n matrix each of whose elements are zero. Then,
A+ O=A= 0O+ Aforevery mx nmatrix A.

4. Existence of additive inverse: Let A =[aij]m><n'

Then the negative of matrix A is defined as matrix [—al./.] and is denoted by -A.

mxn
= Matrix —A is additive inverse of A. Because (-A) + A= O = A + (-A). Here O is null matrix of
order mx n.

5. Cancellation laws holds good in case of addition of matrices, which is X = —A.
A+ X=B+X=>A=8B
X+A=X+B=A=8B

6. The equation A + X =0 has a unique solution in the set of all mx n matrices.
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1.2.5 Substraction of Two Matrices

If Aand B are two mx n matrices, then we define, A— B= A + (-B).

Thus the difference A— Bis obtained by subtracting from each element of A corresponding elements of B.

NOTE: Subtraction of matrices is neither commutative nor associative.

1.2.6 Multiplication of a Matrix by a Scalar

Let Abe any mx nmatrix and kbe any real number called scalar. The mx nmatrix obtained by multiplying
every element of the matrix A by k is called scalar multiple of A by k and is denoted by kA.

=

If A=1[a,],,,then Ak = kA =[KA]

mxn mxn
5 2 1 15 6 3
fA=|6 -5 2|then, 3A=[18 -15 6
1 3 6 3 9 18

Properties of Multiplication of a Matrix by a Scalar:

1.

2
3.
4

Scalar multiplication of matrices distributes over the addition of matrices i.e., k(A + B) = kA + kB.
If pand g are two scalars and A is any mx n matrix then, (p + Q)A = pA + gA.

If pand g are two scalers and A = [al./.]mxn then, p(qA) = (pg)A.

If A= [al./.] be a matrix and k be any scalar then, (-k)A = —(kA) = k(-A).

mxn

1.2.7 Multiplication of Two Matrices

LetA=[a,],.; B=[b,

WJn Xpbe two matrices such that the number of columns in A is equal to the number

of rows in B.

Then the matrix C = [c,]

n
suchthat c, = Y &by is called the product of matrices Aand Bin that order

mxp =

and we write C = AB.

Properties of Matrix Multiplication:

1.

Multiplication of matrices is not commutative. In fact, if the product of AB exists, then it is not necessary
that the product of BA will also exist. For example, A, , x B, , = C, , but
B, ,x As, , does not exist since these are not compatible for multiplication.

Matrix multiplication is associative, if conformability is assured. i.e., A (BC) = (AB)C where A, B, Care
mxn, nx p, px qmatrices respectively.

Multiplication of matrices is distributive with respect to addition of matrices. i.e., A(B +C)
= AB + AC.

The equation AB = O does not necessarily imply that at least one of matrices A and B must be a zero

trix. F | 111 1 00
matrix. Forexample, |, || . 4| = 0 ol

In the case of matrix multiplication if AB = O then it is not necessarily imply that BA = O. In fact, BA
may not even exist.

Both left and right cancellation laws hold for matrix multiplication as shown below:
AB = AC = B = C(if Ais non-singular matrix) and
BA = CA = B = C(if Ais non-singular matrix).
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1.2.8 Trace of a Matrix

Let A be a square matrix of order n. The sum of the elements lying along principal diagonal is called the

trace of A denoted by Tr(A).

1.2.9

n
Thus if A = [al.j]nxnthen, Tr(A) = Za,») =+ a8yt .. a,
i=1
1 2 5
Let A=12 -3 1
-1 6 5

Then, Trace (A) = Tr(A) = 1+(-3) +5=3

Properties of Trace of a Matrix:

Let Aand B be two square matrices of order nand A be a scalar. Then,
1. TrQAA)=ATA

2. Tr(A+B)=TrA+ 1B

3. Tr(AB) = Tr(BA) [If both AB and BA are defined]

Transpose of a Matrix

LetA= [awl./.]mX - Then the nx mmatrix obtained from A by changing its rows into columns and its columns

into rows is called the transpose of A and is denoted by A" or A”,

13
Let A = |2 4] then, AT=A’=B i g}
6 5
If B = [123]
]
Then B =1[123'=[123]=|2
3

Properties of Transpose of a Matrix:

If ATand BT be transposes of A and B respectively then,

1. (A=A

o (A+B)T=AT+B"

3. (kAT = kAT kbeing any complex number
4. (AB)T = BTAT

5. (ABC)T=CTBT AT

1.2.10 Conjugate of a Matrix

The matrix obtained from given matrix A on replacing its elements by the corresponding conjugate complex

numbers is called the conjugate of A and is denoted by A .

{2+3i 4-7; 8}

Example: If A = 6 94

_ [2-3i 4+7i 8
| o+ 6 9-i
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Properties of Conjugate of a Matrix:

If A and B be the conjugates of A and B respectively. Then,

1. (A

—~
=

=A

(A+B) = A+B
(kA) = kA, k being any complex number

—

AB) = AB, Aand B being conformable to multiplication

o K~ 0 D

A = Aif Ais real matrix
A =-Aif Ais purely imaginary matrix

1.2.11 Transposed Conjugate of Matrix
The transpose of the conjugate of a matrix A is called transposed conjugate of A and is denoted by A% or

A*or (A)". Itis also called conjugate transpose of A.

2+i 3-1i

Example: If A = .

4 1—1
. = 2—-i 3+i
To find A®, we first find A = .
4 1+

Thenao = (A = |20 *

enA”=(A) = 3+i 1+i

Some properties: If A% & B° be the transposed conjugates of A and B respectively then,
1. (A=A

2. A+BP=A"+ B

3. (kA)® =KkA® k— complex number
4. (AB)® = BOAY

1.2.12 Classification of Real Matrices
Real matrices can be classified into the following three types based on the relationship between ATand A.
1. Multip

Symmetric Matrices (AT = A)

Skew Symmetric Matrices (AT = —A)

Orthogonal Matrices (AT = A1 or AAT = 1)

Symmetric Matrix: A square matrix A= [al./.] is said to be symmetric if its (i, /)" elements is same as its

(j, )" element i.e., &, = a; for all i & J.

= w N =

In a symmetric matrix, AT = A

a h g
Example: A= |h b f | is asymmetric matrix, since A" = A.
g f c

Note: For any matrix A,
(a) AATis always a symmetric matrix.
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A+ AT

(b)

is always symmetric matrix.

Note: If A and B an symmetric, then
(@) A+ Band A - Bare also symmetric.
(b) AB, BAmay or may not be symmetric.
Skew Symmetric Matrix: A square matrix A = [al.j] is said to be skew symmetric if (i, /)" elements of A
is the negative of the (j, i)" elements of Aif ;= -a; V i, |

In a skew symmetric matrix A" = — A.
A skew symmetric matrix must have all O’s in the diagonal.

0 h g
Example: A= |-h 0O | is a skew-symmetric matrix.
-g -f 0O

T

2
Orthogonal Matrix: A square matrix A is said be orthogonal if:
AT = A" = AAT = AA" = . Thus A will be an orthogonal matrix if, AAT = I = ATA.

Example: The identity matrix is orthogonal since IT=71"" = .

Note: For any matrix A, the matrix is always skew symmetric.

Note: Since for an orthogonal matrix A,

AAT = |
= |AAT| = |1] =1
= |Al 1AT] = 1
= (1Al = 1
= |A| = +1

So the determinant of an orthogonal matrix always has a modulus of 1.

1.2.13 Classification of Complex Matrices

Complex matrices can be classified into the following three types based on relationship between A% and A.

1.

2.
3.
1

Hermitian Matrix (A% = A)
Skew-Hermitian Matrix (A® = —A)
Unitary Matrix (A® = A~ or AA® =)
Hermitian Matrix: A necessary and sufficient condition for a matrix A to be Hermitian is that
A= A

a b+ic
b-ic d
Skew-Hermitian Matrix: A necessary and sufficient condition for a matrix to be skew-Hermitian if
Al = —A

Example: A = { } is a Hermitian matrix.

0 -2-i

E le: A=
xample [2—1‘ 0

} is skew-Hermitian.

Unitary Matrix: A square matrix A is said to be unitary if:
Al = A



MBDE EASY Linear Algebra 9

Multiplying both sides by A, we get an alternate definition of unitary matrix as given below:
A square matrix A is said to be unitary if:

AAD == A" A
1+i —1+i
Example: A = 1vi 1-i is an example of a unitary matrix.
1 —1

2 2

1.3 Determinants
1.3.1 Definition

a1 ap
a1 ax

Leta,,, a,,, a,, a,, be any four numbers. The symbol A = represents the number a,,a,, - a,,a,,

and is called determinants of order 2. The number a, ,, a,,, a,,, a,, are called elements of the determinant and the
number a,,a,, - a,,4,, is called the value of determinant.

1.3.2 Minors, Cofactors and Adjoint
a1 ap a3

Consider the determinant |81 o2 823
d31 d3p ds3

Leaving the row and column passing through the elements a,, then the second order determinant thus
obtained is called the minor of element a; and we will be denoted by Mij'

- G2 a3
Example: The Minor of element a,, = =M,,
dzp a3
Similarly Minor of element a S
imi i = =
y 827 |ax axp 32

1.3.3 Cofactors
The minor l\/ll.j multiplied by (=1)'*/is called the cofactor of element a; We shall denote the cofactor of an
element by corresponding capital letter.

Example: Cofactor of g, = A, = (-1)'*/ M,

A q\oed |82 43
Cofactor of element a,,= A, = (1) M,, = -
ayp a
3p A3y
a1 43
by cofactor of element a,, = A, = —
8 &
>y do3

We define for any matrix, the sum of the products of the elements of any row or column with corresponding
cofactors is equal to the determinant of the matrix.
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Q.1

Q.2

Q.3

When A is diagonalisable A = M-'DM, where the matrix D is a diagonal matrix constructed using the
eigen values of A as its diagonal elements. Also the corresponding matrix M can be obtained by
constructing a nx n matrix whose columns are the eigen vectors of A.

Practical application of Diagonalisation:

One of the uses of diagonalisation is for computing higher powers of a matrix efficiently.

If A= MTDMthen A"=M-D"M

The above property makes it easy to compute higher powers of a matrix A, since computing D" is
much more easy compared with computing A”.

4 2 1 3
GivenMatrix[A]=|6 3 4 7|, therankofthe
o 2 10 1
matrix is
(a) 4 (b) 3
(€ 2 (d) 1

[CE, GATE-2003, 1 mark]

Consider the system of simultaneous equations
xX+2y+2z=6
2x+y+2z=06
x+y+z=5
This system has
(a) unique solution
(b) infinite number of solutions
(c) no solution
(d) exactly two solutions
[ME, GATE-2003, 2 marks]

Consider the following system of linear equations

2 1 -470x] [o
4 3 -12||y|=|5
12 8|z |7

Notice that the second and the third columns of
the coefficient matrix are linearly dependent. For
how many values of a, does this system of
equations have infinitely many solutions?
(@ o0 (b) 1
(c) 2 (d) infinitely many

[CS, GATE-2003, 2 marks]

' Previous GATE and ESE Questions

Q.4

Q.5

Q.6

Q.7

For the matrix [j H the eigen values are

(@) 3and -3
(c) 3and5

(b) -3and -5
(d) 5and 0
[ME, GATE-2003, 1 mark]

For which value of x will the matrix given below
become singular?

8 x O

4 0 2

12 6 0
(a) 4 (b) 6
(c) 8 (d) 12

[ME, GATE-2004, 2 marks]

Let A, B, C, D be nx nmatrices, each with non-
zero determinant, If ABCD = I, then B~" is
(@ DT CTAT
(b) CDA
(c) ADC
(d) does not necessarily exist
[CS, GATE-2004, 1 mark]

How many solutions does the following system
of linear equations have?

—x +5y=-1 x—-y=2 x+3y=3
(@) infinitely many (b) two distinct solutions
(c) unique (d) none

[CS, GATE-2004, 2 marks]
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-2 1

(b) are-1and 2
(d) cannot be determined
[CE, GATE-2004, 2 marks]

4 -2
Q.8 The eigen values of the matrix [ }

(a) are 1and 4
(c) are0and5

Q.9 The sum of the eigen values of the matrix given
12 3
belowis |1 5 1.
3 11

(@) 5
() 9

(b) 7
(d) 18
[ME, GATE-2004, 1 mark]

Q.10 Consider the matrices X, , 5, Y4, 3 @nd Py, 5.
The order of [P(XTY)"1 PT]Twill be
(@) (2x2) (b) (3% 3)
(©) (4x3) (d) (3x4)
[CE, GATE-2005, 1 mark]

Q.11 Given an orthogonal matrix

1 1 1 1
A L [AATJ1IS
1 -1 0 O
O o0 1 -1
@[l 000l ®[!ooo
4 >
OlOO OlOO
4 2
1 1
0 0 =0 00 =-— 0
2 2
1 1
0 0 0 = 0 0 0 —
L 2] L 2|
@[too0oo0] @[)ooo
0100 41
0 01O OZOO
000 i1 ;
0 0 -0
4
1
0O 0 0 —
i 4

[EC, GATE-2005, 2 marks]

10 -1
Qi2itr=2 1 M =y
. = , then top row of R~ is
2 3
(@) [5 6 4] b)y[5 3 1]
(c)[2 0 -] a2z -1 1/2]
[EE, GATE-2005, 2 marks]
2 0.1 1
0. R R
Q.13 Let,A:[O 3 }andA =2 .
0O b
Then (a+ b) =
7 3
(a) 20 (b) 20
19 11
(© 0 (d) 20

[EC, GATE-2005, 2 marks]

Q.14 Consider a non-homogeneous system of linear
equations representing mathematically an over-
determined system. Such a system will be
(a) consistent having a unique solution

(b) consistent having many solutions

(c) inconsistent having a unique solution

(d) inconsistent having no solution

[CE, GATE-2005, 1 mark]

Q.15 Ais a 3 x 4 real matrix and A x = b is an
inconsistent system of equations. The highest
possible rank of Ais
(@) 1
(c) 3

(b) 2
(d) 4
[ME, GATE-2005, 1 mark]

Q.16 In the matrix equation Px = g, which of the
following is a necessary condition for the
existence of at least one solution for the unknown
vector x
(a) Augmented matrix [Pg] must have the same

rank as matrix P
(b) Vector g must have only non-zero elements
(c) Matrix Pmust be singular
(d) Matrix Pmust be square
[EE, GATE-2005, 1 mark]

Q.17 Consider the following system of equations in
three real variables x,, x, and x,
2x; = x, + 3x5 =1
3x, —2x, + bxy =2
Xy —4x, +x3=3
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This system of equations has Q.21 What are the eigen values of the following 2 x 2
(@) no solution matrix?
(b) a unigue solution 2 1
(c) more than one but a finite number of solutions 4 5
(d) an infinite number of solutions (@) -1 and 1 (b) 1and 6
[CS, GATE-2005, 2 marks] (C) 2and 5 (d) 4 and -1
Q.18 Which one of the following is an eigen vector of [CS, GATE-2005, 2 marks]
5 0 0 0 Q.22 Consider the system of equations Anxn Xnx b
055 0 = A, Where, A is a scalar. Let (2, x,) be an
the matrix ? eigen-pair of i | dit di
00 2 1 gen-pair of an eigen value and its corresponding
00 3 1 eigen vector for real matrix A. Let I be a

(n x n) unit matrix. Which one of the following
0 statement is NOT correct?
-2 0 (a) For a homogeneous n x n system of linear
1
0

@ 0 (b) equations, (A — Al)x = 0 having a nontrivial
| O ] | solution, the rank of (A — A7) is less than n
4 M1 (b) For matrix A™, m being a positive integer,

0 1 (A7, x™) will be the eigen-pair for all i

(c) (d) (c) If AT= A1 then |}‘;| =1foralli
(d) If AT= A, then A, is real for all i

[CE, GATE-2005, 2 marks]

[ME, GATE-2005, 2 marks]
Q.23 Multiplication of matrices E and Fis G. Matrices
Eand Gare

3 -2 2
Q.19 Forthematrix A= |0 -2 1], one of the eigen cos® -sine O 100
O 0 1 E=|sine cose O|landG=|0 1 O].
0 0 1 0O 0 1

values is equal to —2. Which of the following is an

eigen vector? What is the matrix F?

[ 3] -3 [cos6 -sine O
(@) |2 (b) | 2 (@) | sine cose O
1) -1 0 0 1
] 2 [ cos® cos® O
() |2 (d) |5 (b) | —cos® sin@ O
L3 0 0 0o 1

[EE, GATE-2005, 2 marks] -
[cos® sine O

Q.20 Given the matrix [_44 ﬂ the eigen vector is (c) |-sin6 cosh O
0 o 1
3 4 -
@ [2} ®) {3} [sind —cos® 0O
2 —1 (d) [cose sine O
(© [_J (d) {2} 0 0 1

[EC, GATE-2005, 2 marks] [ME, GATE-2006, 2 marks]
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1. (c)
Consider first 3 x 3 minors, since maximum
possible rank is 3

4 2 1
6 3 4| =0
2 10
2 13
34 7/=0
10 1
4 1 3
6 4 7/=0
2 01
4 2 3
and 6 3 7/ =0
2 1 1
Since all 3 x 3minors are zero, now try 2 x 2 minors.
4 2
‘6 3| =0
2 1
‘3 4| =8-3=5#0
So, rank = 2
2. (o)
Given equation are
X+2y+z=6
2x+y+2z=6

xX+y+z=5
Given system can be written as

12 1||x 6
2 1 2||lyl=16
11 1|z 5
12 1|6
Augmented matrixis |2 1 2|6
11 1|5
By gauss elimination
1 2 1|6 1 2 1|6
2 1 26| 22,10 -3 0[-6
3~ M
11 1|5 0 -1 0f-1
] 1 2 1]6
Rz -ZFz
—3 5|0 -3 0|-6
O 0 Off

rA) =2

r(AlB) =3
Since the rank of coefficient matrix is 2 and rank of
argument matrix is 3, which is not equal. Hence
system has no solution i.e. system is inconsistent.

b

(Th)e augmented matrix for the given system is
(2 1 -4 |«

4 3 -12|5]

12 -817

Performing Gauss-Elimination on the above matrix

(2 1 -4 |« 2 1 -4| «
43—125%01—45—&
112 -8]7 0 3/2 -6|7-a/2
2 1 -4 o
—-82R 410 1 -4|5-20
O 0 O |ba-1
2

Now for infinite solution it is necessary that at
least one row must be completely zero.
50 -1
5 =
o = 1/5is the solution
.. There is only one value of o for which infinite

solution exists.
P 4 1
|14

(c)

Now, A-AM=0
Where A = eigenvalue
4-A 1 _0
1 4=
(4-12-1=0

o, (4-A@-(12=0
o, (4-A+1)(4-A-1)=0
o, (5-1)(B-1) =0

A=3,A=5
(a)
8 x O
For singularity of matrix = | 4 0 2| =0
12 6 0O

= 8(0-12)- x(0-2x12)=0
: x=4
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10.

(b)

A, B, C, Dis nx nmatrix.

Given ABCD = |
= ABCDD'C'=D"'C""
= AB=D1C"
= ATAB=ATTD1CH
= B=A"1D"C
B = (A—1 D1 c—1)—1
— (C—1)—1 -(D‘1)_1 -(A‘1)_1
= CDA
(c)
-x +b5y=-1
x—y=2
x+3y=3
-1 5]-1
The avg mented matrixis | 1 -1| 2 |.
|1 313
Using gauss-elimination on above matrix we get,
-1 5]-1 (-1 5]-1
1 2| —2Fs 10 4|1
1 3|8 0 8|2
-1 5]-1
B2 10 41
0 0|0

Rank [A| B] = 2 (number of non zero rows in [A| B])
Rank [A] = 2 (number of non zero rows in [A])
Rank [A| B] = Rank [A]
= 2 = number of variables
.. Unique solution exists. Correct choice is (c).

(c)

Characteristic equation is

4-) -2
|A_7\'|| = ‘_2 1_)\" :O
(4-2)x (1-2) = [(-2) x (-2)] = 0
AM-BL=0
= MA=5) =0

Hence,

(b)
Sum of eigen values of given matrix = sum of
diagonal element of given matrix=1+5+1=7.

(a)
With the given order we can say that order of
matrices are as follows:

A = 0, 5 are the eigen values.

X' = 3x4

Y — 4x3

XY - 3x3

(XTYy' - 3x3

P—2x3

Pl - 3x2
P(XTYY1PT — (2x3)(83x3)(3x2) =>2x2

. (PXTY)Y TP = 22

11. (c)
For orthogonal matrix
AAT = I i.e. Identity matrix.

(AATY ! = [T = |
12. (b)
10 -1
R=12 1 -1
2 3 2
1 _ adiiR) _ [cofactor R
IRl IRl
10 -1
IRl =2 1 -1
2 3 2
=1(2+3)-0(4+2)-1(6-2)
=5-4=1

Since we need only the top row of R~', we need
to find only first column of cof (R) which after
transpose will become first row of adj (R).

oof.(1,1)=+1 N _oi3zs
3 2
0 -1
= — =_3
cof. (2, 1) 3 o
cof.(3,1):+0 1
1 -1
5 — —
cof.(A)=|-8 - -
1 _ =
5 -3 1

Adj(A) = [cof. (A)]T= |- - -

Dividing by | R| = 1 gives
5 -3 1
Ri=|- - -

Toprowof R°'=[5 -3 1]
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13. (a) > 1 31
-17 —
[AA=] =1 R o 2 17212
2 -0.1)]1/2 10
s ERiRt s
0 38 L0 b [0 1 Rank ([A] B]) = 3
1 2a-0.1b |10 Rank ([A]) = 3
= 0 3b "o 1 Since Rank ([A | B]) = Rank ([A]) = number of
0.1b variables. The system has unique solution.
= 2a-01b=0=a=—..()
2 18. (a)
y . . .
BHelmpo First solyg for e|lgen values by solving
3 characteristic equation |A-aI]l =0
Now substitute b in equation (i), we get 5.1 0 0 0
1
a:& |A-at| = 0O 5-A 5 0 -0
0 0O 2-x 1
So, a+ b= i.,.l 0 0 3 1-A
%0 3 — (5-1)(5-2) [(2-2) (1-2)-3]
_ 1420 _ 21 _ 7 o
60 %0 20 = (5-2) (5-1) (A2-3h-1)=0
14. (a), (b) and (d) all possible. 3+ 13
In an over determined system having more A=55, _2
eguathns than var'lables, a.II three pOSS|p|I|t|es outiA =5in [A-A]X=0
still exist (a) consistent unique (b) consistent _
infinite and (d) in consistent with no situation. 5-5 0 0 0 * 0
0O 5-5 5 0 x| |0
5. (b) G < minem ) 0 0 2-5 1 ||x| |o
r(A.. ) < min(m, n B
So, Highest possible rank = Least value of 3and 4. 0 0 8 1=9° :x“ 0
i.e. highest possible rank (based on size of A) = 3 00 0 0]|x 0
However if the rank of A = 3 then rank of [A| B] 00 5 0 X, 0
also would be 3, which means the system would = 00 -3 1 X3 o
become consistent. But it is given that the system 00 3 -4||x 0
|Osn||ncsgs2|stent. So the maximum rank of A could — 5r,=0; 3x,+x,=0; 3x,—4r, = 0
y ' Solving which we get x; = 0, x, = 0, x; and x,
16. (a) may be anything.
Rank [Pq] = Rank [P] is necessary for existence The eigen vector corresponding to A = 5, may be
of at least one solution to Px = q. written as
17. (b) X4 K
The augmented matrix for the given system is X - X | | Ko
(2 -1 31 BER Y
3 -2 5|2 x| |0
-1 -4 1|3 where k;, k, may be any real number. Since

Using gauss-elimination method on above matrix
we get,

2 -1 3|1 2 -1 3 | 1

/:1’2—§F1’1
3 -2 52|—2" 40 —1/2 /2|12
—1 -4 (3] ®7" |0 -2 5/2|7/2

choice (a) is the only matrix in this form with both
xyandx, =0, so it is the correct answer.

Since, we already got a correct eigen vector, there
is no need to derive the eigen vector

3+4/13

corresponding to A = 5
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19. (d) The eigen value problemis [A-AI]X=0
Since matrix is triangular, the eigen values are a-% 2
the diagonal elements themselves namely = { 4 357 0
A =3, -2 and 1. Corresponding to eigen value, -
A = -2 let us find the eigen vector Putting A = -5
[A-Al]x =0 we get, {1 2} [x{zm
B3-12 -2 2 7[x] o 4 8l=] 1O _
0 2-2 1 ||lxm|=]o X+ 2 =0 -
4x,+8x, =0 ... (i)

L 0 0 1=l 0 Since (i) and (ii) are the same equation we take

Putting A = -2 in above equation we get, X, +2x, =0
_5 —2 2 Xq 0 x1 = —2X2
0O 0O 1|lx|=]0 xpix, =211
10 0 3]|x3 0 .
1 = _
Which gives the equations, = g =2
5x, —2x,+2x,=0 (D)
1 2 xz -0 (i) Now from the answers given, we look for any
3x;=0 .. (iii) o . ; . o7
Since eq. (ii) and (iii) are same we have vector in this ratio and we find choice (c) s
5x, = 2x, + 2x53 =0 (i)
xy=0 .. (i o oy
Putting x, = K, in eq. (i) we get in this ratio é =3 ° —2.
5x,-2k+2x0=0
= x, =2/5k So choice (c) is an eigen vector corresponding to
.. Eigen vectors are of the form A=-5.
515k Since we already got an answer, there is no need
X
! to find the second eigen vector corresponding to
.x2 = k
A=4.
X3 0
i€ x;ix,:x; =2/5k:k:0=2/5:1:0=2:5:0 21. (b)
2 -
xq 2 A= {—4 5}
%2 | = | 5| isan eigen vector of malrix A The characteristic equation of this matrix is given
X3 0 b
y
20. (c) |A-arl =0
-4 2 2-1 -1 _ 0
First, find the eigen values of A = {4 3} 4 5-)
|A-au| =0 (2-A)(B-1)-4=0
M-7h+6=0
- ‘—4—7» 2‘_0 Y216
4 3-4 .. The eigen values of A are 1 and 6.
= (-4-2)B-A)-8=0 22. (b)
2 _20 = :
z (}L}; 5:?;\_%8 B 8 Although A7 will be the corresponding eigen
- m .m ; ;
- A, = 5andi, = 4 values of A”, x” need not be corresponding eigen

Corresponding to A, = -5 we need to find eigen vectors.

vector:





