Electronics

Engineering

Computer Organization
and Architecture

Comprehensive Theory

with Solved Examples and Practice Questions

i

D
MADE ERSY

N=

MADE ERASY
Publications

MADE EASY Publications

Corporate Office: 44-A/4, Kalu Sarai (Near Hauz Khas Metro Station), New Delhi-110016
E-mail: infomep@madeeasy.in
Contact: 011-45124660, 8860378007

Visit us at: www.madeeasypublications.org

Computer Organization and Architecture

Copyright ©, by MADE EASY Publications.

Allrights are reserved. No part of this publication may be reproduced, stored in or introduced
into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photo-copying, recording or otherwise), without the prior written permission of the above
mentioned publisher of this book.

First Edition: 2015
Second Edition: 2016
Third Edition: 2017
Fourth Edition: 2018
Fifth Edition: 2019
Sixth Edition: 2020

© All rights reserved by MADE EASY PUBLICATIONS. No part of this book may be reproduced or utilized in any form without the
written permission from the publisher.

Contents

Computer Organization

and Architecture

Chapter 1

Computer Organizationcceeeeee 1
1.1 Computer Architecture Vs Computer Organization....... 1
1.2 Evolution of Digital Computers 2
1.3 Components of Computer Structureco.oomeeesneveernenes 2
1.4 CISCand RISC Architectures 3
1.5 Flynn's Classification of Processors 4
1.6 Control Unit 5
1.7 Control Unit Implementation 6
1.8 Main Memory Orgranisation 9
1.9 Associative Memory 12
1.10 Pipelining 20
1.11 Secondary Storage 24
1.12 Internal Fragmentation and External Fragmentation....... 31
1.13 Paging 32

Student’s Assignments 36

Chapter 2

Data Structure......ccccceeeeceeceecceccee.. 40

2.1 Scope

2.2 Flow Control in‘'C’

2.3 Evaluation of function

2.4 Pointers

2.5 Array

2.6 Stack

2.7 Expression Evaluation and Syntax Parsing..........cc.cecc.....

2.8 Evaluation of an Infix Expression

2.9 Evaluation of Prefix Expression

40
43
54
56
58
62
64
65
66

(iii)

2.10 Postfix Evaluation 67
2.11 Infix to Postfix Conversion 69
2.12 Linked Lists 70
2.13 Queue 71
2.14 Tree Traversals 72
2.15 Binary Search Tree 73
2.16 Analysis Of Loops 81
2.17 Comparisons of Functions 86
2.18 Asymptotic Behaviour of Polynomialsccocccrmevernrneen. 87
Student’s Assignments 90
Chapter 3
Operating System........ccccceveeeeeeees 93
3.1 Basics of Operating System 93
3.2 Process 98
3.3 CPU Scheduling 104
34 Memory Management 116
3.5 Virtual Memory 137
3.6 Basics of File 144
3.7 Protection versus Security 154

Chapter 4
Database Management System159
4.1 Introduction 159
4.2 Introduction to Database Design.........coeeeneeeereceens 159
4.3 Introduction to Database Design and Normalization.....165
4.4 Introduction to Transaction 174
4.5 Introduction to Concurrency and Serializability......... 184
HEE

CHAPTER

Database Management System

4.1 Introduction

A database is a collection of related data. By data, we mean known facts that can be recorded and that
have implicit meaning. For example, consider the names, e-mail address, and office addresses of the people in
office.

e Adatabase represents some aspect of the real world, sometimes called the miniworld or the universe

of discourse (UoD).

e Adatabase is a logically coherent collection of data with some inherent meaning.

e A database is designed, built, and populated with data for a specific purpose.

A database management system (DBMS) is a collection of programs that enables users to create and
maintain a database. The DBMS is a general-purpose software sys-temthat facilitates the processes of defining,
constructing, manipulating, and sharing databases among various users and applications. A database can be
defined by involving specification or the data types, structures, and constraints of the data to be stored in the
data-base. The database definition or descriptive information is stored by the DBMS in the form of a database
catalog or dictionary; which is known as meta-data. Constructing the database is the process of storing the
data on some storage medium that is con-trolled by the DBMS. Manipulating a database includes functions
such as querying the database to retrieve specific data, updating the database to reflect changes in the miniworld,
and generating reports from the data. Sharing a database allows multiple users and programs to access the
database simultaneously.

An application program accesses the database by sending queries or requests for data to the DBMS.
A query typically causes some data to be retrieved; a transaction may cause some data to be read and some
data to be written into the database.

4.2 Introduction to Database Design

Entity relationships (ER) model is high level database design allows us to describe the data involved in
real-world enterprise in terms of objects and their relationships and is widely used to develop initial database
design. In overall design process, the ER model is used in a phase called conceptual database design.

42,1 Database Design and ER Diagrams

The database design process can be divided into six steps. The ER model is most relevant to the first
three steps.

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

160 | Electronics Engineering Postal Study Package PIPX] MARDE ERSYH

Requirements Analysis

The very first step in designing a database application is to understand what data is to be stored in the
database, what applications must be built on top of it, and what operations are most frequent and subject to
performance requirements. In other words, we must find out what the users want from the database. This is
usually an informal process that involves discussions with user groups, a study of the current operating environment
and how it is expected to change, analysis of any available documentation on existing applications that are
expected to be replaced or complemented by the database, and so on.

Conceptual Database Design

The information gathered in the requirements analysis step is used to develop a high-level description of
the data to be stored in the database, along with the constraints known to hold over this data. This step is often
carried out using the ER model and is discussed in the rest of this chapter. The ER model is one of several high-
level, or semantic, data models used in database design. The goal is to create a simple description of the data
that closely matches how users and developers think of the data

Logical Database Design

We must choose a DBMS to implement our database design, and convert the conceptual database
design into a database schema in the data model of the chosen DBMS. We will consider only relational DBMSs,
and therefore, the task in the logical design step is to convert an ER schema into a relational database schema.

4.2.2 Entity, Attributes, Entity Set

e Entity is an object that exist and is distinguishable from other objects. For example a person with
give UID is an entity as he can be uniquely identified as one particular person.

e Anentity may be concrete (person) or abstract (job)

e An entity setis a collection of similar entities. (All persons having an account at a bank)

e Entity sets need not be disjoint. For example, the entity set employee (all employees of a bank) and
entity set customer (all customers of the bank) may have members (Entity) in common.

e Anentity is described using a set of attributes, all entities in a given entity set have same attributes,
this is what we mean by similar.

e Foreach attribute associated with an entity set, we must identify domain of attribute which is the set
of permitted values (e.g. if a company rates employees on a scale of 1 to 10 and stores rating in a
field called rating, the associated domain consist of integers 1 through 10)

e Ananalogy can be made with the programming language notion of type definition, concept of entity
set corresponds to the programming language type definition.

e Avariable of a given type has a particular value at a time, thus a programming language variable
corresponds to an entity in ER model.

4.2.3 Relationship and Relationship Sets

e Relationship is association between two or more entities

¢ Relationship set is a set of relationships of same type i.e. relate two or more entity sets

A relationship set can be thought of as a set of n-tuples: {(e,,...e,) | e, € E,,..., e, € E}

Each n-tuple denotes a relationship involving n entities e, through e, where entity e;is in entity set £, In
Figure. We show the relationship set Works_In, in which each relationship indicates a department in which an
employee works. Note that several relationship sets might involve the same entity sets. For example, we could
also have a Manages relationship set involving Employees and Departments.

(el Theory with Solved Examples MADE EARSY www.madeeasypublications.org)

MRDE ERSY LHETTL LT ETTY2021] Computer Org. and Architecture | 161

Employee Departments

Arelationship can also have descriptive attributes. Descriptive attributes are used to record information
about the relationship, rather than about any one of the participating entities.

An instance of a relationship set is a set of relationships. Intuitively, an instance can be thought of as a
‘snapshot’ of the relationship set at some instant in time. An instance of the Works_In relationship set is shown in
Figure. Each Employees entity is denoted by its ssn, and each Departments entity is denoted by its did, for
simplicity. The since value is shown beside each relationship.

123-22-3666
231-31-5368
131-24-3650

223-32-6316

EMPLOYEES WORKS_IN DEPARTMENT
Total participation Many to Many Total participation

An Instance of the Works_In Relationship Set

4.2.4 Relationship Constraints

There are two types of relationship constraints

e Participation constraints

e Cardinality ratio.

There are two types of participation constraints:

(i) Total participation constraints (existence dependency): The participation of an entity set £
in a relationship set R is said to be total if every entity in E participates in at least one
relationship in R. This participation is displayed as a double line connecting.

Example: If a company policy states that every employee must work for a department, then
an employee entity can exist only if it participates in at least one “worksfor” relationship

instance.
Employee Department

(ii) Partial Dependency: If only some entities in £ participate in relationship in R, the participation
of entity set E in relationship R is said to be partial. This participation is displayed as a
single line connecting.

Example: Not every employee “Manages” a department.

Employee Department

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

162 | Electronics Engineering Postal Study Package PIPX] MARDE ERSYH

Mapping Constraints: The possible cardinality ratio for binary relationship are:

e Onetoone(1:1)

e Onetomany (1: M)

e Manytoone (M: 1)

e Manytomany (M: M)

One to One (1: 1): An entity (tuple) in £, is associated with atmost one Entity (tuple) in E,, and an entity
in E, is associated with atmost one entity in A

Example:

Candidate keys of relation R (A, B) = A, B
One to Many (1 : M): An entity (tuple) in E, is associated with zero or more entities in £, but an entity in

E, can be associated with at most one entity in E,
Example :
E E,
Candidate key of R (A, B) = B

Many to one (M: 1): An entity (tuple) in E, is associated with zero or more entities in £, but an entity in

E, can be associated with at most one entity in E,.
Example :
E, E,
Candidate key of R(A, B) = A

Many to many (M : M): An entity (tuple) in E, is associated with zero or more entities in £, and An entity

(tuple) in E, is associated with zero or more entities in £,
E,

Example :
E,

Candidate key of R (A, B) = AB

(el Theory with Solved Examples MADE EARSY www.madeeasypublications.org)

MRDE ERSY LHEIITL LT ETY2021] Computer Org. and Architecture | 163

4.2,5 Minimization of ER Diagram

1. 1:1 cardinality with partial participation at both end

po

1 R 2

Example:

Consider the relation instances of relation E,, £, and A.

E: | A | 4 E: | B, | B, R | A | B,
P 1| P 111
P 21| g 3 | 21
q 31| R

E, and R can be combined to form a single table with A, is primary key (Unique and not NULL) and
B, as alternate key as well as foreign key. Similarly A can be combined with £,. But can't be
combined to both £, and E, i.e. a single table E,RE,
e IfRis combined with both £, and E, i.e. a single relation £, RE, then it has no primary key
e Minimum number of tables = 2
(E;R)and E, or E, and (E,R)
2. 1:1 cardinality with total participation atleast one side. The relationship set £,RE, (A,, A,, B,, B,)
has B1 as primary key and A, as alternate key.

E, 4:<R>—> E,

Note that A, can be null because there may be an entity in £, which is not related to any entity of £,.
e Minimum number of tables = 1 i.e. £,RE,

3. 1:MCardinality: Consider relationship set called manages between the Employees and Departments
entity sets such that each department has at most one manager, although a single employee is
allowed to manage more than one department. The restriction that each department entity appears in
at most one manager is an example of a key constraint, and it implies that each departments entity
appears in at most one manages relationship in any allowable instance of Manages. This restriction
is indicated in the ER diagram of Figure.

Coon> @ame

Manages

Employees Departments

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

164 | Electronics Engineering Postal Study Package PIPX] MARDE ERSYH

The entity set Departments and relationship set Manages combined into a single entity
set dept_manages (did, dname, Eid, Since) with did as primary key and Eid, is foreign key to the
entity set Employees.

e |fforeign key attribute Eid is NULL, then partial participation from Employees set.

e Minimum number of tables = 2

4. M MCardinality: Consider the following £R model

E, R E,

Relationship A has primary key as AB. R can't be combined with E, or E,.
Minimum number of tables = 3

NOTE When to minimize?
2 If relationship set Ris having a key as A which is also foreign key referencing to entity set
‘ é E, then R and E combined to a single entity set e.g.
{) Foreign key
reference
SN

R (A, B) and E (C, D)
R and E combined to a single table = RE (C, B, D)

4.2.,6 Self Referential Relationship

Relationship set relates to same entity sets i.e. pair of entities relating to each other.

Employees

Example: Each employee manages more than one employee but a employee has only
one manager i.e. 1 . M relation exist. Consider employee has attributes Eid, Ename, and
Manages have attribute Sup/D, Sub/D, both Sup/D and Sub/D are foreign key in the employee

anages

referencing Eid, if 1: Mrelationship exist, Sub/D is the key in relationship set manages.
Therefore combined into a single table. If M: Mrelationship then two tables are required.

42,7 WeakEntity Set

Thus far, we have assumed that the attributes associated with an entity set include a key. This assumption
does not always hold. For example, suppose that employees can purchase insurance policies to cover their dependents.
We wish to record information about policies, including who is covered by each policy, but this information is really our
only interest in the dependents of an employee. If an employee quits, any policy owned by the employee is terminated
and we want to delete all the relevant policy and dependent information from the database.

We might choose to identify a dependent by name alone in this situation, since it is reasonable to expect
that the dependents of a given employee have different names. Thus the attributes of the Dependents entity set
might be pname and age. The attribute pname does not identify a dependent uniquely. Recall that the key for
Employees is ssn; thus we might have two employees called XYZ and each might have a son called ABC.

(el Theory with Solved Examples MADE EARSY www.madeeasypublications.org)

MRDE ERSY LHEITL LT ETTY2021] Computer Org. and Architecture | 165

Dependents is an example of a weak entity set. A weak entity can be identified uniquely only by
considering some of its attributes in conjunction with the primary key of another entity, which is called the
identifying owner. The following restrictions must hold:

1. The owner entity set and the weak entity set must participate in a one-to-many relationship set (one

owner entity is associated with one or more weak entities, but each weak entity has a single owner).
This relationship set is called the identifying relationship set of the weak entity set.
2. The weak entity set must have total participation in the identifying relationship set.

4.3 Introduction to Database Design and Normalization

Database design may be performed using two approaches: bottom-up or top-down. A bottom-up
design methodology considers the basic relationships among individual attributes as the starting point and uses
those to construct relation schemas. This approach is not very popular in practice because it suffers from the
problem of having to collect a large number of binary relationships among attributes as the starting point. For
practical situations, it is next to impossible to capture binary relationships among all such pairs of attributes. On
the other hand, a top-down design methodology starts with a number of groupings of attributes into relations that
existtogether naturally. The relations are then analyzed individually and collectively, leading to further decomposition
until all desirable properties are met.

Primary Key

Key (primary key) of a relation schema is the minimal set of attributes that uniquely identifies each tuple
(row) in the relation which has non-NULL values.

If a relation schema has more than one key, each is called candidate key. One of the candidate key is
designated to be primary key and others are called secondary keys (Alternate keys). Alternate keys allowed
NULL values.

Super Key

A superkey of arelation schema R ={A,, A,,..., A } is set of attributes S ¢ R with the property that no
two tuples, t, and t, in any legal relation state r of R will have t,[S] = £,[S]. A key K is a superkey with the
additional property that removal of any attribute from K will cause K not to be superkey any more.

The difference between a key and a superkey is that a key has to be minimal; that is, if we have a key
K={A, A,..., A} of R then K- {A}is not a key of Rforany A, 1 <i<k.

i

Relation R (A, A,, . .. A) with A, as the primary key. Then how many super
keys possible?

Solution:

A candidate key remaining A, A, . . . A, any subset of attribute which combine with A, is superkey.

Total keys = 271

Foreign Key

Foreign key is the set of attribute references to the primary key or alternate key of same table or some
other table.

4.3.1 Integrity Constraints

An Integrity Constrains (IC) is a condition specified on a database schema and restricts the data that can
be stored in an instance of the database. If a database instance satisfies all the integrity constrains specified on
the database schema it is legal instance. A DBMS enforces IC, in that it permits only legal instances to be stored
in the database.

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

166 | Electronics Engineering Postal Study Package PIPX] MARDE ERSYH

Integrity constrains are specified and enforces at different times.

(i) When a DBA or end user defines a database schema, he or she specifies the ICs that must hold on
any instance of this database.

(it) When a database application is run, the DBMS checks for violations and disallows changes ICs. It is

important to specify when ICs are checked, i.e., when a data is inserted, deleted or updated in the table.

Examples of integrity constraints are: Domain constraints, Referential Integrity Constraints, Function
dependencies (FDs), Assertions and Triggers.

4.3.2 Domain Constraints

A relation schema specifies the domain of each field or column in the relation. The values that appear in
a column must be drawn from the domain associated with that column. The domain of a field is essentially the
type of that field, in programming language terms, and restricts the values that can appear in the field. The check
clause in SQL permits the schema designer to specify a predicate (condition) that must be satisfied by value
assigned to a variable whose type is the domain.

4.3.3 Referential Integrity Constraints (RIC)

Sometimes the information stored in a relation is linked to the information stored in another relation. If one
of the relations is modified, the other must be checked and perhaps modified to keep the data consistent. An IC
involving both relations must be specified if a DBMS is to make such checks. The most common /Cinvolving two
relations is a foreign key constraint or RIC.

Suppose we have two relations

Student (Sid, name, gpa)

Enrolled (studid, cid, grade)

Where studid in Enrolled references to the primary key Sid in the students relation. To ensure that only
bonafide students can enroll in courses, any value that appears in the studid field of an instance of the Enrolled
relation should also appear in the sid field of some tuple in the Students relation. The studid field of Enrolled is
called a foreign key and refers to Students. The foreign key in the referencing relation (Enrolled, in our example)
must match the primary key of the referenced relation (Students); that is, it must have the same number of
columns and compatible data types, although the column names can be different.

Every value of the referencing attribute (Studid) must be null or available in the referenced attribute (sid)
i.e., Studid is subset of Sid. Finally note that a foreign key could refer to the same relation.

Enforcing RIC
SQL provides several alternative ways to handle foreign key violations. We must consider three basic questions:
1. What should we do if an Enrolled row is inserted, with a studid column value that does not appear in
any row of the Students table? In this case, the Insert command is simply rejected.
2. What should we do if a Students row is deleted?

The options are:

e Delete all Enrolled rows that refer to the deleted students row.

e Disallow the deletion of the students row if an enrolled row refers to it.

e Setthe studid column to the sid of some (existing) ‘default’ student, for every enrolled row that
refers to the deleted students row.

e For every enrolled row that refers to it, set the studid column to null. In our example, this option
conflicts with the fact that studid is part of the primary key of enrolled and therefore cannot be
set to null. Therefore, we are limited to the first three options in our example, although this fourth
option (setting the foreign key to null) is available in general.

(el Theory with Solved Examples MADE EARSY www.madeeasypublications.org)

MRDE ERSY LHEIITL LT ETTY2021] Computer Org. and Architecture | 167

3. What should we do if the primary key value of a students row is updated?
The options here are similar to the previous case.
SQL allows us to choose any of the four options on DELETE and UPDATE. For example, we can
specify that when a students row is deleted, all enrolled rows that refer to it are to be deleted as well,
but that when the sid column of a students row is modified, this update is to be rejected if an enrolled
row refers to the modified students row:
CREATE TABLE Enrolled (studid CHAR (20),
cid CHAR (20),
grade CHAR (10),
PRIMARY KEY (studid, cid),
FOREIGN KEY (studid) REFERENCES Students (Sid)
ON DELETE CASCADE
ON UPDATE NO ACTION)

The options are specified as part of the foreign key declaration. The default option is NO ACTION, which
means that the action (DELETE or UPDATE) is to be rejected. Thus, the ON UPDATE clause in our example could be
omitted, with the same effect. The CASCADE keyword says that, if a Students row is deleted, all enrolled rows that
refer to it are to be deleted as well. If the UPDATE clause specified CASCADE, and the sid column of a students row
is updated, this update is also carried out in each enrolled row that refers to the updated students row.

If a Students row is deleted, we can switch the enroliment to a ‘default’ student by using ON DELETE SET
DEFAULT. The default student is specified as part of the definition of the sid field in enrolled; for example, sid
CHAR (20) DEFAULT '53666'. Although the specification of a default value is appropriate in some situations (e.g.,
a default parts supplier if a particular supplier goes out of business), it is really not appropriate to switch enrollments
to a default student. The correct solution in this example is to also delete all enroliment tuples for the deleted
student (that is, CASCADE) or to reject the update.

SQL also allows the use of null as the default value by specifying ON DELETE SET NULL.

4.3.4 Functional Dependency (FD)

A functional dependency (FD) is a kind of /C that generalizes the concept of a key. Let R be a relation
schema and let X and Y be nonempty sets of attributes in R. We say that an instance r of R satisfies the FD
X — Y. If the following holds for every pair of tuples t, and t, in r.

Ift,. X=1,X thent.Y=1.Y.

X — Yisread as Xfunctionally determines Y or simply X determines Y.

An FD X — Y essentially says that if two tuples agree on the values in attributes X, they must also agree
on the values in attributes Y.

If a constraints on A states that there cannot be more than one tuple with a given X value in any relation
instance r(R), thatis Xis the key of R, however the definition of an FD does not require that the set Xbe minimal,
the additional minimality condition must be met for X to be a key. If X— Y holds, where Y is set of all attribute and
there is some subset V of X such that V— Y holds then Xis a super key.

There are two types of FD.
1. Trivial FD: If Xand Y are attribute set of Rand X2 Y'then X — Yis trivial FD.
Example: sid — sid, Sid Sname — sid, Sid Sname — Sname
Every trivial FD implies in relation.
2. Non-trivial FD: If X and Y are attribute sets of R and no common attribute between X and Yi.e.,
XN Y=¢then X— Yisnon-trivial FD.
Example: sid — gpa, Sname — sid gpa
There may be relation with no non-trivial FD.

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

168 | Electronics Engineering Postal Study Package PIPX] MARDE ERSYH

4.3.5 Closure of Set of FDs

Set of all FDs that include given FDs as well as those that can be inferred from the given. FDs is called
the closure of FDs. If F is the set of given FDs the F* is called closure of F.

The following three rules, called Armstrong’s Axioms can be applied repeatedly to infer all FDs implied
by a set Fof FDs. Let X, Yand Zdenotes sets of attributes over a relation schema R.

e Reflexivity: If X2 Ythen X— Y

e Augmentation: If X — Ythen XZ— YZfor any Z

e Transitivity: If X— Yand Y— Zthen X—> Z

Armstrong’s Axioms are sound, by sound we mean that given a set of FDs F specified on relational
schema R, any dependency that we can infer from F by using Armstrong’s Axioms holds in every relation rof R
that also complete by complete we mean set of dependencies F, which are called closure of Fcan be determined
from F by using Armstrong’s Axioms only.

It is convenient to use some additional rule while finding F*.
e Decomposition or projection rule: If X — YZthen X— Yand X — Z
e Union or additive rule: If X— Yand X— Zthen X — YZ

4.3.6 Attribute Closure
The algorithm for computing the attribute closure of a set X of attributes is given below:
closure = X;
repeat until there is no change {
if there isan FD U — Vin Fsuch that U c closure,

then set closure = closure U V

}
This algorithm can be modified to find keys by starting with set X containing a single attribute and
stopping as soon as closure contains all attributes in the relation schema. By varying the starting attribute and
the order in which the algorithm considers FDs, we can obtain all candidate keys.

Given a relation R (A, B, C, D, E, F) with FDs
AB— C
B—>D
AD— E
Compute (AB)*
Solution:
(AB)* — AB
A — ABC {AB— C}
— ABCD {B— D}
— ABCDE {AD — E}
(AB)* — ABCDE

4.3.7 Membership Test

If we just want to check whether a given dependency X — Yiis in the closure of set Fof FDs. We can do so
efficiently without computing F+ by using closure of X (finding X*). If X* contains Y then X— Y'is a member of
functional dependency set F i.e. X— Yislogically impliesin For F= X —Y.

(el Theory with Solved Examples MADE EARSY www.madeeasypublications.org)

MRDE ERSY LHEITL LT ET Y2021 Computer Org. and Architecture | 169

Prove or disprove the following inference rule for functional dependency
using (i) Armstrong’s Axioms (if) Attribute closure
(X> Y, XY Z={X-> Z
Solution:
() Armstrong’s Axioms:
X— X(trivial) and X— Y by union rule X — XY
X— XYand XY — Z by transitivity X — Z
(it) Attribute closure: If closure of X determines Zin the given FD set then X — Zis logically implies
in the given FD. X* —» XYZ
Since X* contains Z, X — Zimplies in the given FDs.

4.3.8 Equivalence of Sets of Functional Dependencies

Two sets of functional dependencies E and Fare equivalent if Ecovers F(E 2 F) and Fcovers E (F2 E).
Therefore equivalence means that every FD in E can be inferred from Fand every FD in Fcan be inferred from E.

E covers F | Fcovers E| Result
Yes Yes E=F
Yes No EoF
No Yes FoE
No No E and F not comparable

Given below two sets of FDs for a relation R (A, B, C, D, E). Are they
equivalent?
F1:{A— B, AB— C, D— AC, D— E}
F2: {A— BC, D— AE}

Solution:
If F1 covers F2 then every FD in F2 logically implies in F1.
FDsin F2 A— BC, D— AE

Check for A— BC

(Af—>ABC {A— B, AB— Cin F1}
Check for D — AE

(D> DACE{D— AC,D— Ein F1}
Hence F1 covers F2 (i.e., F1 2 F2)
If F2 covers F1then every FD in F1 logically implies in F2.
Flhas4FDs{A— BAB— C, D— AC,D— E}
Check for A— B

(A —> AB {A— BCin F2}
Check for AB— C

(AB)* - ABC {A— BCin F2}

Check for D— AC
(D)t — DAEBC {D— AE, A— BCin F2}
Check forD— E
(D)* — DAEBC {D— AEin F2}
Hence F2 covers Fli.e.,, F2 2 Fl
SoF1=F2

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

