POSTAL Book Package

2021

Electrical Engineering

Conventional Practice Sets

Electric Circuits

Contents

SI.	Topic Page No.
1.	Basics, Circuit Elements, Nodal & Mesh Analysis
2.	Circuit Theorems
3.	Capacitors and Inductors
4.	Transient Response of DC and AC Networks (First Order RL & RC Circuits,
	Second Order RLC Circuits)
5.	Sinusoidal Steady State Analysis, AC Power Analysis
6.	Magnetically Coupled Circuits
7.	Frequency Response and Resonance
8.	Two Port Networks
9.	Network Topology, Miscellaneous

Note: This book contains copyright subject matter to MADE EASY Publications, New Delhi. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means.

Violators are liable to be legally prosecuted.

CHAPTER

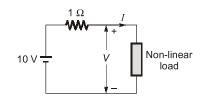
Basics, Circuit Elements, Nodal & Mesh Analysis

Q1 A 10 V battery with an internal resistance of 1 Ω is connected across a non-linear load whose *V-I* characteristics is given by $7I = V^2 + 2$ V. Find the current delivered by the battery.

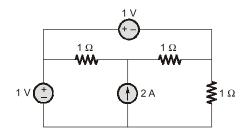
Solution:

Using KVL,

$$V + I = 10$$
 ...(i)


Given,

$$7I = V^2 + 2 V$$
 ...(ii)


On solving equation (i) and equation (ii)

we get, V = 5 Volts

$$I = 5 A$$

Q2 Find the power delivered by the current source in the figure shown below.

Solution:

Consider node voltages V_a , V_b , V_x as shown below.

Applying nodal analysis.

$$\frac{V_x - V_a}{1} + \frac{V_x - V_b}{1} = 2$$

$$\Rightarrow \qquad 2V_x - (V_a + V_b) = 2$$

$$\Rightarrow \qquad V_x = \frac{2 + (V_a + V_b)}{2} \qquad ...(i)$$
Also,
$$V_a - V_b = 1 \lor V_a = 1 \lor V_b = 0 \lor$$

$$V_x = \frac{2 + (1 + 0)}{2} = 1.5 \text{ V}$$

$$\therefore$$
Power delivered by current source = $V_x \cdot I$

$$[I = 2 \text{ A (given)}]$$

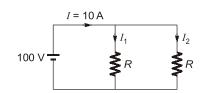
$$= (1.5) \times 2 = 3 \text{ Watts}$$

Two identical coils connected in parallel across 100 V dc supply, take 10 A current from the supply. Power dissipated in one coil is 600 W. What is the resistance of each coil?

Solution:

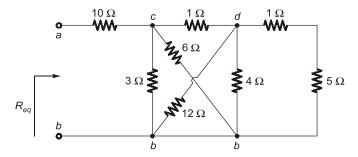
Given, Power dissipated in one coil = 600 W

$$I = I_1 + I_2$$



$$I_1 = I_2$$

 $I_1 = I_2 = \frac{10 \text{ A}}{2} = 5 \text{ A}$


 $P = I_1^2 R$ Power dissipated,

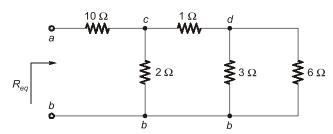
Hence, resistance of coil,

$$R = \frac{P}{I_1^2} = \frac{600}{(5)^2} = 24 \Omega$$

Q4 Calculate equivalent resistance R_{eq} in the circuit shown.

Solution:

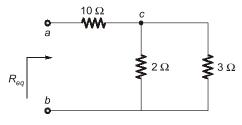
 3Ω and 6Ω resistors in parallel because they are connected to same two nodes c and b. Their combined resistance is


$$= \frac{3\times6}{3+6} = 2\Omega$$

Similarly, 12 Ω and 4 Ω resistors are in parallel since they are connected to same two nodes d and b.

Hence,
$$12\Omega | | 4\Omega = \frac{12\times 4}{12+4} = 3\Omega$$

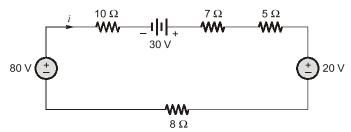
Also, 1 Ω and 5 Ω resistors are in series, hence combined resistance,


$$1 \Omega + 5 \Omega = 6 \Omega$$

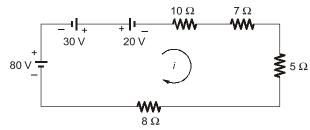
Further 3 Ω and 6 Ω in parallel gives equivalent resistance = $\frac{3 \Omega \times 6 \Omega}{(3+6) \Omega} = 2 \Omega$

This 2 Ω in series with 1 Ω .

Given equivalent as $(2 + 1) \Omega = 3 \Omega$ as shown below.


Now 2 Ω and 3 Ω parallel's combination in series with 10 Ω resistance.

Hence,


$$R_{ab} = R_{eq} = 10 \Omega + (2 \Omega || 3 \Omega)$$

= $10 + \frac{2 \times 3}{2 + 3} = 11.2 \Omega$

Q.5 Use resistance and source combinations to determine the current i in figure shown and power delivered by 80 V source.

Solution:

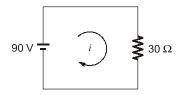
The circuit can be redrawn as,

Further combining the three voltage sources into an equivalent source of 90 V as shown below.

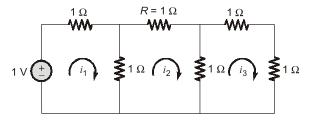
All the resistance, combined in series as,

$$R_{eq} = (10+7+5+8)\,\Omega = 30\,\Omega \label{eq:eq}$$

 $-90+30i=0$


Simply applying kVL,

$$-90 + 30i = 0$$

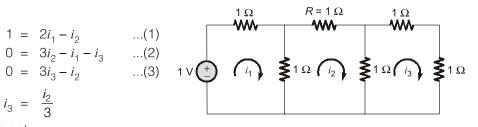

Hence,

$$i = 3 A$$

Power delivered by 80 V source = 80 V × 3 A = 240 W

Q6 Find the power dissipated in the resistor R in the ladder network shown in the figure below.

Solution:


Using KVL in loop,

$$1 = 2i_1 - i_2$$
 ...(1)

$$0 = 3i_2 - i_1 - i_3 \dots (2)$$

$$0 = 3i_3 - i_2$$
 ...(3

$$i_3 = \frac{i_2}{2}$$

:.

By solving the equations, we get,

$$i_2 = \frac{3}{13} A$$

∴ Power dissipated in the resistor
$$R = i^2 R = \frac{9}{169} W$$

Q7 The following mesh equations pertain to a network:

$$8I_1 - 5I_2 - I_3 = 110$$

 $-5I_1 + 10I_2 + 0 = 0$
 $-I_1 + 0 + 7I_3 = 115$

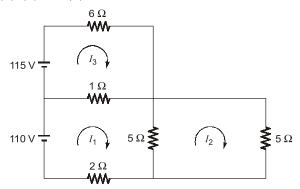
Draw network showing each element.

Solution:

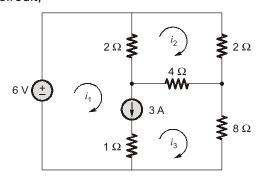
All the mesh equations can be rearrangement as,

$$8I_1 - 5I_2 - I_3 = 110$$

$$\Rightarrow 5(I_1 - I_2) + (I_1 - I_3) + 2I_1 = 110$$


$$-5I_1 + 10I_2 + 0 = 0$$
...(1)

$$5(I_2 - I_1) + 5I_2 = 0 \qquad ...(2)$$


$$-I_1 + 0 + 7I_3 = 115$$

$$\Rightarrow \qquad (I_3 - I_1) + 6I_3 = 115 \qquad ...(3)$$

On the basis of equation (1), (2) and (3), we can draw the network as,

Q8 Find mesh currents in the circuit,

Solution:

$$i_1 - i_3 = 3 A$$
 ...(1)

BY KVL for super mesh,

$$2(i_1 - i_2) + 4(i_3 - i_2) + 8i_3 = 6$$

$$2i_1 - 6i_2 + 12i_3 = 6$$
 ...(2)

By KVL for second mesh,

$$2i_2 + 4(i_2 - i_3) + 2(i_2 - i_1) = 0$$

 $8i_2 - 4i_3 - 2i_1 = 0$...(3)

Solving equations (1), (2) and (3), we get

$$i_1 = 3.473 \,\text{A}$$

 $i_2 = 1.105 \,\text{A}$
 $i_3 = 0.473 \,\text{A}$