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CHAPTER

Second Order RLC Circuits

7.1 Introduction

In the previous chapter we studied circuits which contained only one energy storage element, combined
with a passive network which partly determined how long it took either the capacitor or the inductor to charge/
discharge. The differential equations which resulted from analysis were always first-order. In this chapter we will
consider circuits containing two storage elements. These are known as second-order circuits because their
responses are described by differential equations that contain second derivatives.

Our analysis of second-order circuits will be similar to that used for first-order. We will first consider
circuits that are excited by the initial conditions of the storage elements. Although these circuits may contain
dependent sources, they are free of independent sources. These source-free circuits, will give natural responses
as expected. Later we will consider circuits that are excited by independent sources. These circuits will give both
the transient response and the steady-state response.

7.2 Finding Initial and Final Values

A circuit is given and we need to find the initial and final conditions i(0*), v(0%),

av(0™) di(0")

,i(eo) and () here i(t) and v(t) are the inductor current and capacitor voltage respectively.

at ' dt
To determine i(0*), v(0*) keep in mind that the capacitor voltage is always continuous so that
v(0*) = v(0") L(7.1)
and the inductor current is always continuous so that
i(0*) = i(07) ..(7.2)

where t = 0~ denotes the time just before a switching event and t = 0% is the time just after the switching
event, assuming that the switching event takes place at t = 0.

av(0") di(0")
at ' dt
write the KVL or KCL equation, employing either the nodal equation or loop equation which give you required

quantity more directly, then simply put condition t = 0*, and find the required quantity.

To determine

draw the circuit at t = O (the circuit obtained after switching) and then try to
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To determine i(e0), v(eo) that is value of current and voltage at steady state (since at steady state the
capacitor is open circuit and inductor is short circuit) so i(e), v(e0) are the short circuit inductor current and open
circuit capacitor voltage respectively. The examples at the end of the chapter illustrate these ideas.

EC

NOTE

Tillnow we have considered that the voltage across capacitor will not change abruptly
i.e. v(0") = V(0*) but there is an exception case as shown in the figure.

_}{_ v(t) i(t)

=0 i(t)
5 vCi) Wt)y—=c¢ 50—

0 t 0 t

Initially the capacitor was not charged and v(07) = 0. Now the battery is connected to
the circuit at t= 0, since the battery is ideal with A;, = 0, so time constant of circuit
T =RC = 0. So capacitor charges to 5 V instantaneously i.e. v(07) # v(0*) and current
will be an impulse function in this case.

Tillnow we have considered that the current through inductor will not change abruptly
i.e. i(07) = i(0") but there is an exception case as shown in the figure.

K - i(?) V()

t=0 i(t)
I (D W) g L L

0 t 0 t

Initially the inductor was not charged and i(0~) = 0. Now the current source is connected
to the circuit at t = 0, since the current source is ideal with Ry, = e, so time constant
of circuit T = L/R = 0. So inductor charges to I, instantaneously i.e. i(07) # i(0*) and
voltage will be an impulse function in this case.

Consider the circuit given in the figure below, the switch is turn on at ¢t = 0 and initial
charge on each capacitor is 0 i.e. v(07) = 0.

All capacitors are initially uncharged and so circuit at t= 0*, will have all the capacitors
acting as short-circuit if we consider the path shown in the above circuit we can see
that the current at t = 0* will be «. Thus, v(0*) # v (07) for C,, C,, C; and v(0*) for
these capacitors can be found using voltage division rule.

Theory with Solved Examples MBDE ERSH www.madeeasypublications.org>
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7.3 The Source-Free Series RLC Circuit

Consider the series RLC circuit shown in Figure (7.1). The circuit is being excited by the energy initially
stored in the capacitor and inductor. The energy is represented by the initial capacitor voltage V,, and initial
inductor current /,. Thus, at t = 0,

Figure-7.1: A source-free series RLC circuit

10
v(0) = Eil(t) dt =V, .(7.3)
i(0) = 1, (7.4)
Applying KVL around the loop in Figure (7.1)
L i) 1
Ri(t)+ L — | it)dt =0 (7.5
i)+ dt+C£l() (7.5)
With the help of Laplace transform
it) — I(s)
dit)y ¢ e
o — sl(s)—-i(07)
0
[ [ iat
c I(s) ‘o
_fz(t)dt —_— —+ =
s s

1(1 V,
The equation (7.5) changes to, RI(S)+ L[sI(s) - Iy]+ ° [g + ?O} =0

I(s)= ] LC _ .(7.6)

The denominator of the above equation is known as characteristic equation of the circuit. Roots of
denominator of the above equation are

R RV 1

Si= ot (zj "I A7)
R (R 1

2= o (Z) "I A78)
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A more compact way of expressing the roots is

Sy = —oc+,loc2—u)g, S, = —(x—\locz—wg ..(7.9)
LI
ol "°" JLC

Theroots s, and s, are called natural frequencies, measured in nepers per second (Np/s), because they
are associated with the natural response of the circuit; w, is known as the resonant frequency or strictly as the
undamped natural frequency, expressed in radians per second (rad/s); and « is the neper frequency or the

damping factor, expressed in nepers per second. In terms of a.and w,,, the denominator of the equation (7.6) can
be written as

o =

s +205+w5 =0 .(7.10)

o
The solution of equation (7.10) depends on acand m,,. The ratio 03—0 is known as the damping ratio €. Thus,

the natural response of series RLC circuit is
i(t) = A e + A, e%!

where the constants A, and A, are determined from the initial values i(0) and %

From equation (7.9), we can infer that there are three types of solutions:

1. Ifa > w,, both the roots will be real and unequal, the response is said to be over-damped.

2. If a = wy, both the roots are real and equal, the response is said to be critically damped.

3. If a <, both the roots will be complex and conjugates of each other, the response is said to be
under-damped.

We will consider each of these cases separately.

Overdamped Case (o > ® )

From equations (7.8) and (7.9), o > w, implies C > 41 /R?. When this happens, both roots s;and s, are
negative and real. The response is

i(t) = A e+ A,e%!

Where A, and A, are found from the initial conditions. This shows that the natural response is the sum of
two decaying exponential. For the over-damped response, damping ratio & > 1. Figure (7.2) illustrates a typical
overdamped case.

i(t)

0 t

Figure-7.2 : Overdamped response

(el Theory with Solved Examples MADE EARSY www.madeeasypublications.org)
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m  \We considered the step response of the parallel RLC circuit where the input was
current and response was the voltage across inductor. If we consider the response of
parallel RLC circuit with voltage as input and current across the inductor as output
then current across the inductor i(t) will rise linearly as shown in the figure. The circuit
in this case is an unstable circuit.

i(t)

~
1l
o
~.
=

©

AAAA
VVVv
Py
~
11
11
O

of

7.8 Circuit Analysis in the s-Domain

All the circuit analysis techniques that we have studied for pure resistive networks may be used in
s-domain analysis. The node voltage method, mesh current method, source transformations, and Thevenin-
Norton equivalents are all valid techniques in the s-domain. These can be applied using same methodologies as
we discussed for resistive networks. The step-by-step procedure of circuit analysis in the s-domain is given
below.

e Step-1:Draw the circuit into s-domain substituting an s-domain equivalent for each circuit element.
The inductors and capacitors are replaced by their equivalent discussed in previous chapter (For
inductor and capacitor we first need to determine the initial capacitor voltage and inductor current
and then replace them with their s-domain equivalent).

e Step-2:Apply any circuit analysis technique to obtain the desired voltage or current in the s-domain.

e Step-3: Take inverse Laplace transform to convert the voltages and/or currents back to the time
domain.

Using Laplace Transform to find which element get charged at steady-state

A circuit with inductor and capacitor is given and we need to determine that which element get charged
at steady-state. For this we follow these steps:
e Convert the circuit from time domain into s-domain.
e Apply nodal analysis at the node connecting the inductor and capacitor.
e Now apply final value theorem to find value of voltage at node at t = e and find which element get
charged.
Now we shall illustrate these steps with the help of two examples.

Example-1: Consider the circuit given in the Figure 7.8, our motive is to determine which element get
charged at steady-state.

R
o AAAA Vall)
VWYV
t=0

v LB -
|

LA
9}

Figure-7.8
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Q.1

Student's
Assignments

1

Find an expression for v (1) valid for t> 0 in the
circuit of figure.

150 V

ic
N
20 nF =< Ve

Q.2 After being open for a long time, the switch in
figure, closes at t= 0. Find (a) i, (07); (b) v(07) ;
() ig(0*); (d) i(0%); (e) v(0.2).

e

+

1L
3u(-HA D sa0F T Ve

R

\AAAJ
~
1
(=)

<
48 Q <
<

10I4€? lh

Q.3 Given the circuit in figure, find i(f) and v(f) for
t> 0.

N
N
©

AAAA

VVVV

VVVY
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Q.5 Findanexpression for v(f) inthe circuit of figure,
valid for t > 0.

t=0 3
90 Vo

e O

-

1ov<:> 202

<>

Q.6 In the circuit of figure, the switch has been in
position 1 for along time but moved to position 2
at t=0. find

(@ v(0*), dv(0h)/dt  (b) v(t)and t=0.

8Q
0
t=0
>
O.ZSHE =050 <1)4v
> v_—1F

Q.7 Findan expression for i (t) in the circuit of figure,
valid for t> 0, if v(0") = 10 V.and i,(07) = 0.

AAAA

3V, 2Q . Ve
10 mF

N
0
AA

VVVy

Q.8 Complete the determination of the initial
conditions in the circuit of figure and determine
the value of first derivative of all three voltage

and current variable at t = O*.
Vr

Q.4

(@) Choose R, inthe circuit of figure, so that the

R

+

AAAA

Iy

.\
Su(t)A D ngsH

VVVy
30 Q

Ic

= Ve

OEL

response after t= 0 will be critically damped.
(b) Now find R, to obtain v(0) = 100 V.
(c) Find v(t) att=1ms.

Yyvy

t=0

X

0.5u(-HA CD

1uF =V

AAAA
vy
X

Q.9 Inthe circuit of figure, calculate iy(f) and v,(f) for

t>0.

20 1H
t=0

<

3ov<:) 8Q =

<

io(t)

e

Yyvy

F == vy(t)

NN
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Q.10 Determine v(1) for t> 0 in the circuit of figure.

2Q
t=0 .
8V<i> 1=V
12V 5 _

DO

1H

>
60 260
< 6Q <
MW i i(t) ]
]
t=0 h 8
30V 10V

Q.12 Refer to the circuit in figure. Calculate i(f) for t> 0.

2u(-t)A
‘4—‘
li(t) O/
2
; 109
~F=—= AAAA
3 VWY
<D
502
9 10Q
AAAA

Q.13 The switch in the circuit of figure is moved from
position a to b at t = 0. Determine i(1) for t > 0.
0.02F 140

l_{ ;+)12v
i(t)

o5 2H :><a
=0

6 Q

AAAA

yvvy

4A

\

Q.14 Findthe output voltage v,(1) in the circuit of figure.

A

t=0

AAA
+
1H§ 10mF == v,

>

LA
10

© 2

\AAAJ

3A<D 5Q§

Answer:

1.

10.
11.
13.

Q.1

©® N o U W N

| " Student's 2
Assignments

(Soe—SOOOOI _ zoe—ZOOOOOt V)

@1A (b)48V (c)2A (d)-3A (e)-1754V
i(=(2-200e2A, vi)=Q2+4t) etV
(R, = 1kQ, R, =250 Q, v(1 ms) = -212V)
—e7081(5 c0s9.89¢t + 0.413 s5in9.891) V
(@) 4V,-8V/s (b) e(4 cos1.73t-2.30sin1.73t) V
(_30e—300t A)
VL(O+) =120V, V (0+) =150V, V, (0+) -30V
+ +
DO __q000vss, DO 108y,
dt dt
+ .t
dVa(0") )=—1200 V/s, dig(0 )=—4O A/sec
dt dt
. (Nt
M =-40A/sec
dt

v,(t) = e* (24 cos1.98t + 3.02 5in1.98t) V
io(t) =e 4 (0.00013 cos1.98t — 12.09 sin1.98t) A

12 —e{(4 cos2t + 2 sin2t) V
(5 e—4r) A 12. (e—4.4t + e—0.903t) A
3-9t)e™A 14. (200t e 10V

The switch in the circuit of figure below has been
in position ‘a’ for a long time. At t =0, the switch
moves instantaneously to position ‘b’

2Q a b

vvy

<
4v<i) 1H§ 10Q = voll)
<

2.5 mFT

If V(1) = (Ae=201— Bte201) V for t > 0, then the
values of A and B respectively are

(@ 0,80 (b) 4,240

(c) 4,80 (d) 4,0

(el Theory with Solved Examples MADE EARSY www.madeeasypublications.org)
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Common Data Questions (9 to 10):
Consider the circuit shown in the figure, where u(i) is
given as unit step function.

3u(t) A D

Postal Study Package PIPX]

al

t

+ ve(t)
<

V() S 100
<

15V

in(t)

40 Q

250 mF

125 mH

Q.9 What are the values of v(1) and v4(1), at t = 0*

respectively?
(@ 0,0 (b) 15V, -30V
(c) 0,30V (dy -15V,0

Q.10 Which of the following sets of values is correct

for the circuit at t = 0*7?

di; (0*) avg(07) avg(0")
at at at
(@) 30V/s 12 V/s 0
(b) O 12 V/s 0
() 0 0 0
(d) O 12 V/s 12 V/s

Q.11 The switch in the figure has been closed for a

EC

long time and is opened at f =

0. The inductor

current and the capacitor voltage are zero at

t=0.For t>0, (\t) is given by

(Given o, = %)

i)

‘@ 0, B

C == V1)

g

MEDE ERSY

v(t) = ([_OCJ sinmgt

V(1) = (IjwyL) cos w,t

v(t) = ([—Oj sinmgt
wol

V(1) = (I,m,C) cos w,t

Q.12 In the circuit shown below the switch is closed
at t= 0 after long time. The current i (f) for t> 0

IS

20V Ci) J

5Q =

-

\AAAJ

(a) —10sin8tA
(c) —10cos8tA

Answer Key:
1. (0) 2. () 3. (a)
6. (a) 7. (d) 8. (b)
11. (d) 12. (a)

(b) 10sin8tA
(d) 10cos8tA
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