Mechanical Engineering

Power Plant Engineering

Comprehensive Theory with Solved Examples and Practice Questions

MADE EASY Publications

Corporate Office: 44-A/4, Kalu Sarai (Near Hauz Khas Metro Station), New Delhi-110016

E-mail: infomep@madeeasy.in

Contact: 011-45124660, 8860378007

Visit us at: www.madeeasypublications.org

Power Plant Engineering

© Copyright by MADE EASY Publications.

All rights are reserved. No part of this publication may be reproduced, stored in or introduced into a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photo-copying, recording or otherwise), without the prior written permission of the above mentioned publisher of this book.

First Edition: 2015 Second Edition: 2016 Third Edition: 2017 Fourth Edition: 2018 Fifth Edition: 2019 **Sixth Edition: 2020**

© All rights reserved by MADE EASY PUBLICATIONS. No part of this book may be reproduced or utilized in any form without the written permission from the publisher.

Contents

Power Plant Engineering

Chapter 1

Stean	n Power Plant1	2.6	Cooling Limit of Exhaust Gas	30
1.1	Introduction	2.7	Control of Excess Air	31
1.2	Boiler	2.8	Draught (or Draft) System	32
1.3	Classification of Boilers	2.9	Fans	35
1.4	Fire Tube Boiler		Objective Brain Teasers	36
1.5	Water Tube Boiler		Student's Assignments	38
1.6	Steam Drum			
1.7	Economisers	Cha	oter 3	
1.8	Superheaters	Anal	ysis of Steam Cycles	39
1.9	Reheater10	•	Introduction	
1.10	Electro-Static Precipitator (ESP)10		Carnot Cycle	
1.11	Ash Handling System11		Rankine Cycle	
1.12	Feedwater Treatment11		Deviation of Actual Cycle from Theoretical	
1.13	High Pressure Boiler12		Rankine Cycle	44
	Super Critical Boiler (once through or monotube	3.5	Improvement in Rankine Cycle	
	boiler)14		Super Critical Pressure Cycle	
1.15	Boiler Mountings15		Various Efficiencies of Steam Power Plants	
1.16	Boiler Accessories15		Objective Brain Teasers	58
1.17			Student's Assignments	59
	Boilers"17			
1.18	Fluidized Bed Boiler17	Chai	oter 4	
1.19		_	neration and Combined Cycle	60
	Objective Brain Teasers23	_	troduction	
	Student's Assignments25	4.1 111		
		4.2		
Chap	oter 2	4.3		
Fuels and Combustion26		4.5		
2.1		4.5	Power Cycle	•
	Introduction26	4.6	•	
2.2	Coal Applysis 27	4.0		
	Coal Proporties 28	4.7	Objective Brain Teasers	
2.4	Coal Properties		Student's Assignments	
2.5	Actual Air-Fuel Ratio29		Student's Assignments	/ 0

Chapter 5		6.14	Cycle with Intercooling and Reheating	
Steam	Turbines71	6.15	Cycle with Intercooling, Reheating and	
5.1	Introduction71		Regeneration	130
5.2	Classification of Steam turbine71	6.16	Comparison of Various Cycles	140
5.3	Simple Impulse Turbines72	6.17	Performance Curves	14
5.4	Compounding of Steam Turbines72	6.18	Polytropic Efficiency (η_p)	143
5.5	Impulse Reaction Turbine75		Objective Brain Teasers	152
5.6	Comparison of Impulse and Reaction Turbine75		Student's Assignments	155
5.7	Impulse Turbine Analysis76			
5.8	Reaction Turbine Analysis88	Chapt	er 7	
	Parsons Turbine (50% reaction turbine)90	Recipr	ocating Air Compressors	157
	Enthalpy Drop in Various Stages99	7.1	Introduction	157
	Losses in Steam Turbines	7.2	Work Input for Compression Process	158
	Objective Brain Teasers 107	7.3	Equation of Work (with Clearance Volume)	160
	Student's Assignments110	7.4	Volumetric Efficiency (hvol)	16
	3	7.5	Multistage Compression	163
Chapter 6		7.6	Effect of Clearance Volume	168
Gas Tu	rbine111	7.7	Actual P-V Diagram for Single-Stage	
6.1	Introduction 111		Compressor	174
6.2	Open Cycle Arrangements111		Objective Brain Teasers	17
6.3	Closed Cycle Arrangement112		Student's Assignments	179
6.4	Requirements of the Working Medium114			
6.5	Advantages of Gas Turbines Over Reciprocating	Chapt	er 8	
	Engines114	Rotary	Compressor	180
6.6	Ideal Open Gas Turbine Cycle114	8.1	Introduction	180
6.7	Actual Cycle Analysis117	8.2	Centrifugal Compressor	180
6.8	Optimum Pressure Ratio121	8.3	Axial Flow Compressors	192
6.9	Cycle with Regeneration or Heat Exchange	8.4	Comparison between the Centrifugal	
	Cycle122		and Axial Flow Compressor	198
6.10	Cycle with Reheating 124	8.5	Root Blower	200
6.11	Cycle with Reheating and Regeneration 125	8.6	Vane Type Blower	20
6.12	Cycle with Intercooling127		Objective Brain Teasers	212
6.13	Cycle with Intercooling and Regeneration 128		Student's Assignments	21

Chapter 9	10.13 Liquid Metal Fast Breeder Reactor (LMFBR) 259
Compressible Fluid Flow & Nozzle217	10.14 Advantages and Disadvantages of
9.1 Introduction217	Nuclear Power Plant262
9.2 Static Properties217	10.15 Nuclear Waste Disposal263
9.3 Stagnation Properties217	10.16 Nuclear Power Programme of India263
9.4 Velocity of Sound (Sonic Velocity)	10.17 Location of Nuclear Power Plant264
9.5 One Dimensional Steady Isentropic	Objective Brain Teasers265
Flow (Effect of Area Variation)	Student's Assignments268
9.6 Nozzles223	
9.7 Flow Through Nozzles224	Chapter 11
9.8 Super Saturated Flow228	Jet Engines269
9.9 Types of Nozzle229	11.1 Introduction269
9.10 Fanno and Rayleigh Lines	11.2 Atmospheric Jet Engine or Air Breathing
Objective Brain Teasers243	Engines 269
Student's Assignments246	11.3 Rocket Engine or Non Air Breathing Engines 269
3	11.4 Reciprocating or Propeller Engines269
Chanter 10	11.5 Gas Turbine Engines270
Chapter 10	11.6 Ramjet Engines270
Nuclear Power Plants247	11.7 Pulse Jet Engine272
10.1 Introduction247	11.8 Turboprop Engine274
10.2 Isotopes248	11.9 Turbojet Engine275
10.3 Nuclear Stability and Binding Energy 248	11.10 Parameters Affecting Performance 289
10.4 Radioactive Decay and Half Life249	11.11 Advantages of Jet Propulsion over
10.5 Nuclear Reactor & Essential Components 251	Other System290
10.6 Selection of Fuel and Moderator252	11.12 Comparison of Relative Performances of
10.7 Types of Reactors	Various Propulsion Power291
10.8 Pressurised Water Reactor (PWR)	11.13 Rocket Engine291
10.9 Boiling Water Reactor (BWR)255	11.14 Solid Propellant Rockets294
10.10 CANDU Reactor	11.15 Liquid Propellant Rockets295
10.11 Gas Cooled Reactor258	Objective Brain Teasers296
10.12 Breeder Reactors258	Student's Assignments299

Chapter 12

Steam Condensers, Cooling Tower &						
Air Ejector300						
Steam Condenser						
12.1	Introduction300					
12.2	Vacuum300					
12.3	Organs of a Steam condensing Plant 301					
12.4	Classification of Condensers301					
12.5	Jet Condensers 301					
Eject	or Condenser					
12.6	Surface Condensers					
12.7	Reasons for Inefficiency in Surface					
	Condensers					
12.8	Comparison Between Jet and Surface					
	Condensers					
12.9	Selection of Condenser 307					
12.10	Sources of Air in Condensers307					

12.11	Effects of Air Leakage in Condenser	307
12.12	Method for Obtaining Maximum Vacuum in	
	Condensers	808
12.13	Vacuum Measurement	808
12.14	Vacuum Efficiency	309
12.15	Condenser Efficiency	309
12.16	Determination of Mass of Cooling Water	309
12.17	Heat Transmission through Walls of Tubes of a	
	Surface condenser	310
12.18	Methods of Cleaning Condenser Tubes	311
12.19	Cooling Tower	312
12.20	Dry Cooling Towers	315
12.21	Maintenance of Cooling Towers	316
Air Ej	ector	
12.22	Air Ejector Working	319
12.23	Air Ejector Theory	319
12.24	Application of Air Ejectors	319

Analysis of Steam Cycles

3.1 Introduction

Steam power plants work on the basis of some thermodynamic cycle, such as Carnot cycle and Rankine cycle. Carnot cycle is an ideal and most efficient cycle but is not practically feasible. Coal based power stations are using Rankine cycle.

A steam power plant continuously converts the chemical energy of the fossile fuels or fissile fuels into mechanical energy and ultimately into electrical energy. The working substance is water which is some times in the liquid phase and sometimes in the vapour phase.

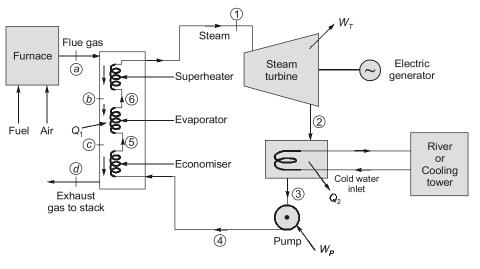



Fig. 3.1

3.2 Carnot Cycle

This cycle was proposed by Sadi Carnot. Under Carnot cycle the working substance receives heat at temperature and rejects at another temperature. The cycle consists of **two isothermal** processes and **two reversible adiabatic** processes, as shown in **fig 3.2**.

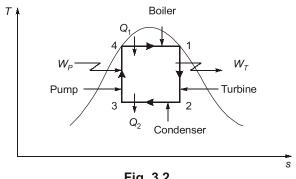


Fig. 3.2

Process 1–2: Isentropic (reversible adiabatic) expansion.

Process 2-3: Reversible isothermal heat rejection

Process 3-4: Isentropic (reversible adiabatic) compression

Process 4–1: Reversible isothermal heat addition

All the above processes of Carnot cycle are reversible hence the entire cycle is also reversible. The same can also be represented by a heat engine which operates between two thermal reservoirs maintained at temperature T_1 and T_2 and produces the work W.

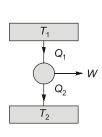
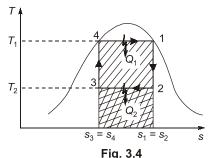



Fig. 3.3

The single line hatched area enclosed by points 1, 2, 3, 4 represents the net heat $(Q_1 - Q_2)$ or net work $(W_T - W_P)$ interaction, and the double line or crossed hatched area represents heat rejection, (Q_2) .

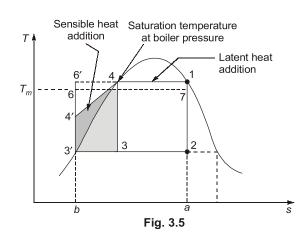
For a substance undergoing a cyclic change, cyclic integral of work is equal to the cyclic integral of heat. Thus,

$$W_T - W_P = Q_1 - Q_2$$
, and efficiency (η) can be represented by

$$\eta = \frac{\text{Net work}}{\text{Heat supplied}} = \frac{W_T - W_P}{Q_1} = \frac{Q_1 - Q_2}{Q_1} = 1 - \frac{Q_2}{Q_1} = 1 - \frac{T_2(s_2 - s_3)}{T_1(s_1 - s_4)} = 1 - \frac{T_2}{T_1}$$

Since the area under a process on *T-s* diagram represents the heat interaction.

3.2.1 **Limitations of Carnot Cycle**


- 1. **Termination of condensation process** is not practically feasible at point 3 from where compression leads to point 4 on saturation line, i.e., water in saturated condition and needs only latent heat for conversion into vapour.
- During compression of the mixture of steam and water in the pump from point 3 to point 4, steam is getting condensed and vanishes at the end of compression. When steam gets converted into water, a large difference in specific volume causes cavitation over the impellers. The cavitation damage the impeller due to which impeller requires frequent replacement.

- 3. Any pump cannot suck the mixture of water and its vapour at state point 3 and deliver saturated liquid at state point 4, which is the need of Carnot cycle.
- 4. If exhaust steam from turbine is completely cooled in condenser, then transfer of heat at constant temperature (6'-4) and infinite pressure gradient is not possible. Addition of heat at constant temperature is possible only within the dome. Outside the dome, i.e., either in sub-cooled region or superheat region this is not possible.

3.3 Rankine Cycle

Limitation of Carnot cycle can be overcome by complete condensation of vapour up to point 3' (shown as in figure 3.5) as a large amount of cooling water is supplied in the condenser. The water thus formed is pumped to point 4' and sent to the boiler for addition of sensible and latent heat to get it converted into steam. The area under 3'-4'-4 is sensible heat addition and area under 4-1 is latent heat addition. The cycle thus formed by the process 1-2-3'-4'-4-1 becomes Rankine cycle, which is being used in thermal power plants with modifications to induce superheaters, regenerator and reheater.

This cycle contains four processes:

- Boiler: Reversible constant pressure heating process of water
- * Turbine: Reversible adiabatic expansion of steam.
- Condenser: Reversible constant pressure heat rejection
- Pump: Reversible adiabatic compression.

When all these four processes are ideal the cycle is an ideal cycle, called a Rankine cycle.

3.3.1 Calculation of Mean Temperature (T_m)

In the Rankine cycle, heat is added reversibly at a constant pressure but at infinite temperatures. If T_m is the mean temperature of heat addition, then

Heat added:

$$q_1 = h_1 - h'_4 = T_m (s_2 - s'_3)$$

or

$$T_m = \frac{h_1 - h_4'}{s_2 - s_3'}$$

Comparison of Carnot and Rankine Cycles

Efficiency of Carnot cycle, $\eta_C = 1 - \frac{T_2}{T_1}$

$$\eta_{\rm C} = 1 - \frac{T_2}{T_1}$$

For comparison, let us assume that the entire heat addition in Rankine cycle also takes place at some imaginary temperature $T_{m'}$ i.e., area b-4'-4-1-a-b= area b-6-7-a-b. Thus, the equivalent cycle with heat addition at constant temperature becomes 7-2-3'-6-7, with heat addition at T_m and heat rejection at T_2 . The efficiency of this equivalent cycle becomes:

$$\eta_R = 1 - \frac{T_2}{T_m}$$
, where $T_m < T_1$

Since T_m is lower than T_1 in Rankine cycle, the efficiency of Rankine is lower than the efficiency of Carnot cycle $\eta_B < \eta_C$

Lower is the condenser pressure, the higher will be the efficiency of the Rankine cycle. Since it is fixed so $\eta_{\text{Rankine}} = f(T_m)$ only.

The higher the mean temperature of heat addition, the higher will be the cycle efficiency.

3.3.3 **Analysis of Rankine Cycle**

For 1 kg of fluid, the steady flow energy equation to each processes:

For boiler, $q_1 = h_1 - h_4$

 $W_{\tau} = h_1 - h_2$ For turbine,

 $q_2 = h_2 - h_3$ For condenser,

For pump, $W_P = h_A - h_3$

Efficiency of Rankine cycle,

$$\eta = \frac{w_{net}}{q_1} = \frac{(h_1 - h_2) - (h_4 - h_3)}{h_1 - h_4}$$

The pump work is small compared to the turbine work and is often neglected.

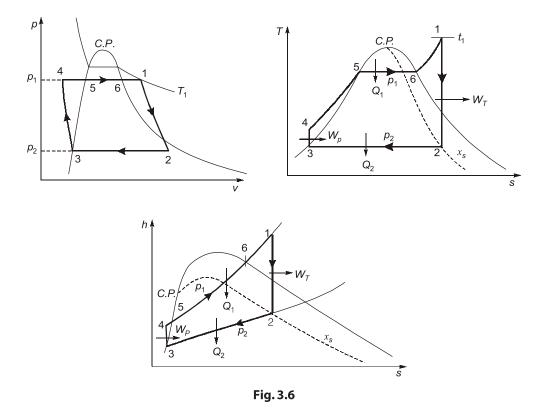
Isentropic Cycle

Work ratio =
$$\frac{\text{Net work}}{\text{Turbine work}} = \frac{w_{net}}{w_T}$$

Critical temperature and pressure of water are 374°C and 221.2 bar. At all temperature above the critical, it is impossible to liquefy water vapour by using pressure, no matter how great the pressure is employed.

Steam Rate

The capacity of a steam plant is often expressed in terms of steam rate or specific steam consumption. It is defined as the rate of steam flow (kg/s) required to produce unit shaft output (1 kW).


Steam rate =
$$\frac{1}{w_{net}}$$
kg/kWs = $\frac{3600}{w_{net}}$ kg/kWh

Heat Rate

The cycle efficiency is sometimes expressed alternatively as heat rate which is the rate of heat input (kJ/s) required to produce unit shaft output (1 kW)

H.R. = $\frac{3600}{\eta_{th}} = \frac{3600 q_1}{w_{net}} \text{ kJ/kWh}$ Heat rate:

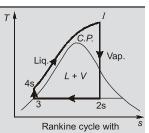
Water is first heated sensibly in the economiser in the liquid phase at a certain pressure till it becomes saturated liquid.

$$q_{Eco} = h_5 - h_4$$

In the evaporator there is phase change or boiling with state changing by-absorbing the latent heat of vapourization at that pressure.

$$q_{Evo} = h_6 - h_5 = h_{fg}$$

The saturated vapour is further heated at constant pressure in the superheater to gaseous phase.


$$q_{SH} = h_1 - h_6$$

As the pressure increases, the latent heat decreases and so the heat absorbed in the evaporator decreases and the fraction of the total heat absorbed in the superheater increases.

For steam generators operating above the critical pressure there is no evaporator or boiling section.

However, there is a transition zone where all the liquid on being heated suddenly flashes into vapour.

supercritical boiler pressure

3′

Fig. 3.7

leaving the condenser is subcooled by 6.3°C. The boiler is sized for a mass flow rate of 20 kg/s. Determine the rate at which heat is added in the boiler, the power required to operate the pumps, the net power produced by the cycle and the thermal efficiency.

[Ans. 59,660 kW, 122 kW, 18,050 kW, 30.3%]

Q.3 The closed feedwater heater of a regenerative Rankine cycle is to heat 7000 kPa feedwater from 260°C to a saturated liquid. The turbine supplies bleed steam at 6000 kPa and 325°C to this unit. This steam is condensed to a saturated liquid before entering the pump. Calculate the amount of bleed steam required to heat 1 kg of feedwater in this unit.

[Ans. 0.0779 kg/s]

- Q.4 A steam power plant operates on an ideal regenerative Rankine cycle with two open feedwater heaters. Steam enters the turbine at 10 MPa and 600°C and exhausts to the condenser at 5 kPa. Steam is extracted from the turbine at 0.6 and 0.2 MPa. Water leaves both feedwater heaters as a saturated liquid. The mass flow rate of steam through the boiler is 22 kg/s. Show the cycle on a T-s diagram, and determine
 - (a) the net power output of the power plant and
 - (b) the thermal efficiency of the cycle

[Ans. (a) 30.5 MW, (b) 47.1%]

Note: Use steam table if required.

