Computer Science

&IT

Programming and
Data Structures

Comprehensive Theory

with Solved Examples and Practice Questions

N=

MADE ERSY

N=

MRADE ERSY
Publications

MADE EASY Publications

Corporate Office: 44-A/4, Kalu Sarai (Near Hauz Khas Metro Station), New Delhi-110016
E-mail: infomep@madeeasy.in
Contact: 011-45124660, 8860378007

Visit us at: www.madeeasypublications.org

Programming and Data Structures

© Copyright by MADE EASY Publications.

Allrights are reserved. No part of this publication may be reproduced, stored in or introduced
into a retrieval system, or transmitted in any form or by any means (electronic, mechanical,
photo-copying, recording or otherwise), without the prior written permission of the above
mentioned publisher of this book.

First Edition: 2015
Second Edition : 2016
Third Edition : 2017
Fourth Edition : 2018
Fifth Edition : 2019
Sixth Edition : 2020

© All rights reserved by MADE EASY PUBLICATIONS. No part of this book may be reproduced or utilized in any form without the
written permission from the publisher.

Contents

Programming & Data Structures

Chapter 1

Programming Methodology................. 2
1.1 Data Segments in Memory 2
1.2 Scope of Variable 4
1.3 CVariable 6
14 Operatorsin C 9
1.5 Address arithmeticin C 16
1.6 Value of Variable in C Language.......c.coeevermerrernnns 16
1.7 Flow Control in C 17
1.8 Function 25
1.9 Recursion 31
1.10 CScope Rules 34
1.11 Storage Class 37
1.12 Pointers 45
1.13 Sequence Pointsin C 58
1.14 Declarations and NOtationsmmmriisenne. 60
1.15 Const Qualifier 61
1.16 StringsinC 62
Student Assignments 64
Chapter 2
Arrays..... . . .79
2.1 Definition of Array 79
2.2 Declaration of Array 79
2.3 Properties of Array 80
24 Accessing Elements of an Array........ccocennecennn. 83
Student Assignments 92
Chapter 3
Stack . . .98
3.1 Introduction 98
3.2 Operation on Stack 98
3.3 Simple Representation of a Stack.........c..ccueevennee 100
3.4 ADT of Stack 100
3.5 Operations of Stack 100

3.6 Average Stack Lifetime of an Element................ 105

3.7 Applications of Stack 106

3.8 Tower of Hanoi 116

Student Assignments 119
Chapter 4

Queue.. . . 127

4.1 Introduction 127

4.2 Operations of Queue 127

4.3 Application of Queue 129

4.4 Circular Queue 129

4.5 Implement Queue using Stackscccoeeeeeneeees 130

4.6 Implement Stack Using QUeues.......ccvveeeuucen 131

4.7 Average Lifetime of an Element in Queue........ 134

4.8 Types of Queue 134

49 Double Ended Queue (Dequeue)cceeenneene 135

4.10 Priority Queue 136

Student Assignments 139
Chapter 5

Linked Lists147

5.1 Introduction 147

5.2 Linked Lists 148

5.3 Uses of Linked lists 148

5.4 Singly Linked List or One Way Chain........cc......... 148

5.5 Circular Single Linked LiSt........coeeenererneesseeererennns 157

5.6 Doubly Linked Lists or Two-way chain............... 159

5.7 List Implementation of Queues........ccccccouvvererrnnee 164

5.8 List Implementation of Stacks.......cc.couerveemsrrennns 165

5.9 List Implementation of Priority Queues............ 166

5.10 Other operation on Linked List.........ccoeccrmrvererrnne 166

5.11 Polynomial Addition Using Linked List.............. 167

5.12 Polynomial Multiplication Using Linked List ... 168

(iii)

Student Assignments 170

Chapter 6

Trees
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14

6.15

oo (XYY oo ----001

Introduction

Glossary

Applications of Tree

Tree Traversals for Forests

Binary Trees

Types of Binary Trees

Applications of Binary Tree.........crreermeeresneneens
Internal and External Nodescccoveeveeernecennnns

Expression Trees

Binary Tree Representationsceeveeereeereenncs
Implicit Array Representation of Binary Trees......

Threaded Binary Trees

Representing Lists as Binary Trees.........ouccuuuee.

Binary Search Tree
AVL Tree (Adelson Velski Landis)cooccvevenreenees

Student Assignments

81
181
181
182
183
184
184
186
190
192
193
194
196
196
199
208
223

(iv)

Chapter 7
Hashing Techniquescccccceeeecccnnneeees 236

7.1
7.2
7.3
74
7.5

7.6

7.7

Introduction

236

Hash Function

236

Collisions

237

Collision Resolution Techniques..............

............. 237

244

Hashing Function
Comparison of Collision Resolution

Techniques

246

Various Hash Function

246

Student Assignments

248

Programming and
Data Structures

Goal of the Subject

Computer Science is not the study of programming. Programming, however, is an important part of what
a computer scientist does. Programming is often the way that we create a representation for our solutions.
Therefore, this language representation and the process of creating it becomes a fundamental part of the
discipline.

A data structure is a specialized format for organizing and storing data. To manage the complexity of
problems and the problem-solving process, computer scientists use abstractions to allow them to focus
on the "big picture" without getting lost in the details. By creating models of the problem domain, we are
able to utilize a better and more efficient problem-solving process. The implementation of an abstract
data type, often referred to as a data structure, will require that we provide a physical view of the data
using some collection of programming constructs and primitive data types.

General data structure types include the array, the file, the record, the table, the tree, and so on. Any data
structure is designed to organize data to suit a specific purpose so that it can be accessed and worked
with in appropriate ways. In computer programming, a data structure may be selected or designed to
store data for the purpose of working on it with various algorithms.

Introduction

In this book we tried to keep the syllabus of Software Programming and Data structures around
the GATE syllabus. Each topic required for GATE is crisply covered with illustrative examples and each
chapter is provided with Student Assignment at the end of each chapter so that the students get the
thorough revision of the topics that he/she had studied. This subject is carefully divided into seven
chapters as described below.

1. Programming Methodology: In this chapter we will study about the different segments and their
organization, variables and their scope, flow of control in a program, function evaluation types,
storage classes, and pointers and finally we discuss the application of pointers.

2. Arrays: In this chapter we will study properties and application of arrays, accessing methods for
two and three dimensional arrays and finally we discuss the arrays in the form of special matrices.

3. Stack: In this chapter we will study the ADT of stack, operations on stack, applications and different
types of notations evaluated by stack and finally we discuss the tower of Hanoi (application).

4. Queue: In this chapter we will study about the Queue, operations on queue, applications and finally
we discuss different types of queues.

5. Linked List: In this chapter we will study types and applications of linked list, operations on linked
list, priority queue and finally we discuss implementation of stack, queue and priority queue using
lists.

6. Trees: In this chapter we introduce trees, their applications, types of trees (BST, B-tree, and AVL),
different types tree traversals and finally we discuss operations on trees.

7. Hashing Techniques: In this chapter we introduce the Hash function, collision resolution techniques
and comparisons of different collision techniques.

CHAPTER

Linked Lists

5.1 Introduction

We have seen representation of linear data structures by using sequential allocation method of storage,
as in, arrays. But this is unacceptable in cases like:

(a) Unpredictable storage requirements: The exact amount of data storage required by the program

varies with the amount of data being processed. This may not be available at the time we write
programs but are to be determined later.

Example: Linked allocations are very beneficial in case of polynomials. When we add two polynomials,
and none of their degrees match, the resulting polynomial has the size equal to the sum of the two
polynomials to be added. In such cases, we can generate nodes (allocate memory to the data
member) whenever required, if we use linked representation (dynamic memory allocation).

(b) Extensive data manipulation takes place: Frequently many operations like insertion, deletion etc.,

are to be performed on the linked list.

Comparison of Arrays, Vectors and Linked Lists

1.

Arrays can be useful because:

e The convenient “[]” notation allows immediate access to any element in the array.

e Arrays can directly hold primitive types, as well as objects.

Arrays can be a problem because:

e The size of the array must be known or at least estimated before the array can be used.

e |Increasing the size of an array can be very time consuming (create another array and copy
contents).

e Arrays can only use a contiguous block of memory. When a new element is inserted into an
array, all elements above the new one must be shifted up.

Vectors are useful because:

e Sizing is no longer a problem.

e They are built-in to the java.util class.

e They inherit many useful methods.

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

148 | Computer Science & IT Postal Study Package PIPX] MRDE ERSYH

4. AVector can be a problem because:

e Arrays are still used (in the background).

e Every re-sizing of the Vector causes a time lag, since a new array must be created in another
block of memory and all the elements copied over.

e FElementinsertion is just as time-consuming as with arrays, and possibly even worse if the Vector
has to be resized.

e |t can only store Objects, not primitive types.

e Do not have the handy “[]” notation, only methods.

5.2 Linked Lists

A linked list is a linear data structure in which elements are not stored at contiguous memory locations.
The elements in linked list are linked using pointers.

A linked list consists of node where each node contains a data field and a reference (link) to the next
node in the list.

Data Next
A | 2000 B | 3000 C | 4000 D | NULL
1000 2000 3000 4000
Head

Next — Contains address where next data is stored.
Null — Denotes end of list.
Head — Points to the start of list (stores address of first node of list).

5.3 Uses of Linked lists

Link list can store primitive types or Objects.

A node can be anywhere in memory. The list does not have to occupy a contiguous memory space.
List size is only limited by available memory, and does not have to be declared first.

No empty nodes.

The adding, insertion or deletion of list elements or nodes can be accomplished with the minimal
disruption of neighbouring nodes.

5.4 Singly Linked List or One Way Chain

This is a list, which may consist of an ordered set of elements that may vary in number. Each element in
this linked list is called as node. A node in a singly linked list consists of two parts, a information part where the
actual data is stored and a link part, which stores the address of the successor (next) node in the list. The order
of the elements is maintained by this explicit link between them. The typical node is as shown:

Consider an example where the marks obtained by the students are stored in a linked list as shown in the

O~

figure:

Head Tail
\-%wl |65 ——45] 62| |J

In figure, the arrows represent the links. The data part of each node consists of the marks obtained by a
student and the next part is a pointer to the next node. The NULL in the last node indicates that this node is the
last node in the list and has no successors at present. In the above example the data part has a single element
marks but you can have as many elements as you require, like his name, class etc.

(@Y Theory with Solved Examples MADE ERSY www.madeeasypublications.org)

MRDE ERSYH

LI CIRLYE T H2021] Programming and Data Structures | 149

5.4.1 Creation of a Singly Linked List

struct node* main() //returning a pointer of type struct node

{
struct node
{

int data;
struct node* next;

}i
struct node a = {10, NULL} //creating and initializing all nodes
struct node b = {20, NULL}
struct node ¢ = {30, NULL}
struct node d = {40, NULL}
struct node e = {50, NULL}
struct node £ = {60, NULL}
a.next = &b; //1linking nodes by storing address of next node
b.next = &c;
c.next = &d;
d.next = &e;
e.next = &f;
struct node* head = &a //contains address of first node
return head;

}

Remember o malloc() and calloc() are library functions that allocate memory dynamically. It

means that memory is allocated during run time in heap.

o malloc() allocates memory block of given size and returns a pointer to the beginning
of the block. It does not initialize the allocated memory. If we try to access to
content of memory block (before initializing) then we will get segmentation fault
error (or garbage values).

Syntax: void malloc (size_t size);

o calloc allocates memory and also initializes the allocated memory block to 0. If we
try to access the content of these blocks, then we will get 0.

void malloc (size_r num, size_t size);

calloc takes 2 arguments:

o Number of blocks to be allocated

o Size of each block.

o Both malloc() and calloc() return pointer to allocated memory, if memory is allocated
successfully else return NULL.

o malloc() is faster than calloc().

5.4.2 Operations on Singly Linked List

Structure declaration:
typedof struct node

{ int data;

struct node *1link;

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

150 | Computer Science & IT Postal Study Package PIPX] MRDE ERSYH

}i
include<stdio.h>
include<alloc.h> /*required for dynamic memory allocation*/
Function to add a node at the end of the linked list
oppend (struct node** head, int num)
{
//create a new node using malloc
struct node* new node = (struct node*) malloc(size of struct node))
//malloc returns address of type void to convert it into struct node type
//new_node contains address of newly created node.
new node — data = num;
new node — link = NULL;
if (*head == NULL)//check if linked list is empty

*head — new _node; //head contains address of first node
return* head;

}

else //if linked list already contains nodes
{
struct node* temp = *head;

while (temp — 1link! null) //loop to go to end of list

temp = temp — link;
}
//after coming out of while loop, temp contains address of last node
temp — link = new node; //temp link now points to new node
return* head;

}
}

The append() function has to deal with two situations:

(a) The node is being added to an empty list.

(b) The node is being added to the end of the linked list.

e Infirstcase, if (*head == NULL) gets satisfied, then the newly created node (new_node) is the
only node in list and head points to that node.

num NULL

Head
e Insecondcase, if (*head == NULL) faili.e., linked list is not empty. Temp is made to point to the
first node of the list using the statement.
struct node *temp = *head
%/—J

Create a new pointer
temp of type struct node

(@Y Theory with Solved Examples MADE ERSY www.madeeasypublications.org)

MARDE ERSY LI CIRLYE T H2021] Programming and Data Structures | 151

Then using temp we have traversed through the entire linked list using the statements:
while (temp—1link !=NULL)

temp=temp—1link;

The position of the pointer before and after traversing the linked list is shown below:

head

Lo [T2 [e [4oy

head temp

l l
L e [o] 4]~ [nou]

Node being added at the end of Singly Linked List

e Eachtime through the loop the statement temp=temp—1ink makes temp point to the next node in
the list. When temp reaches the last node the condition temp—1ink != NULL would fail.

e Once outside the loop, the temp contains address of last node.

e To add new node at last, the link part of last node has to be changed. The link part of last node
should contain address of newly created node (new_node). This is done through the statement:

temp — link = new node;

e Thereis often a confusion among the beginners as to how the statement temp=temp—1ink makes
temp point to the next node in the linked list. Let us understand this with the help of an example.
Suppose in a linked list containing 4 nodes temp is pointing to the first node. This is shown in the
figure below:

temp

Address of firstnode <—-50 | | 1 [400| [2 |700| | 3 [910] |4 [NuLL]|
50 400 700 910
Actual representation of a Singly Linked List in Memory

e |nstead of showing the links to the next node the above diagram shows the addresses of the next
node in the link part of each node. When we execute the statement temp=temp—1ink, the right
hand side yields 50. This address is now stored in temp. As a result, temp starts positioning nodes
present at address 50. In effect the statement has shifted temp so that it has started positioning to
the next node in the linked list.

5.4.3 Function to Add a Node at the beginning of the Linked List
add_at beginning(struct node **head, int num)
{
//create a new node using malloc
struct node* new node = (struct node*) malloc(size of (struct node)) ;
1. new_node — data = num;
2. new node — link = *head;
*head = new_node;

return *head;

}

(www.madeeasypublications.org MBDE ERSH Theory with Solved Examples

170 | Computer Science & IT

‘EE%;:

Q.1

Q.2

Q.3

Q.4

Q.5

Q.6

cs

Student's
Assignments

In a linked list

(i) Eachnode contains a pointer to the next node.
(ii) An array of pointers point to the links.

(7ii) Each node containing data and pointer to next.
(iv) The links are stored in an array.

Which of the following is correct.

(@) (i, iii) (b) only (i)

(c) only (iif) (d)y (i, iv)

Which of the following operation is performed

more efficiently by double linked list than by linear

linked list

(a) deleting nodes whose location is given

(b) searching an unsorted list for a given item

(c) inserting a node after the node with a given
location

(d) traveling the list to process each node

Linked lists are not suitable for
(@) Insertion sort

(b) Binary search

(c) Polynomial addition

(d) Polynomial multiplication

A list can be initialized to the empty list by which
operation

(@) list =1,
(c) list = null;

(b) list =0;
(d) None of these

In the given n elements linear linked list to find
k" node from the end, how much time it will take?
(@ O(n) (b) O(rP)

(c) O(nlogn) (d) None of these

If we want to find last node of a linked list then
the correct coding is :
(@) if (temp — link ! = null)
temp = temp — link;
(b) if (temp — data = num
temp = temp — link;
(c) while (temp — link | = data)
temp = temp — link;
(d) while (temp — link! = null)
temp = temp — link;

Postal Study Package PIPX]

Q.7 Consider the following program with a linked list

Q.8

MRDE ERSY

called head:

int func(list *head) {
list *a, *Db;
if (head==nulll||head—next==null)
return 0;
a=head;
b=head—next;
while (a!=Db)
{
if (a==nullllb==nulll|b—next==
null)
return 0;
a=a—next;
b=b—next;
if (b—next==NULL)
return 0;
else
b=b—next;

}

return 1;

}

What does the function func() do?

(a) Finds if the length of the loop is odd

(b) Finds whether any loop is present in linked
list

(c) Finds whether the length of the linked list is
even

(d) None of these

The most appropriate matching for the following
pairs:
List-1
A. m=malloc(5); m = null;
B. free (n); n— value = 5;
C. char*p;*p="a}
List-Il
1. Using dangling pointer
2. Using uninitialized pointers
3. Lostmemory

A B C
@ 1 3 2
by 2 1 3
(c) 3 2 1
(d3 1 2

Theory with Solved Examples

MERDE ERSY

www.madeeasypublications.org)

MRDE ERSY

Void deletenode
LLnode**head)

{

struct LLnode*temp=*head;

from LL(struct

struct LLnode*current=*head;
if (*head==NULL)
{
printf (“list empty”) ;
return;

}

while (current—next!=head)

{

current=current—next;
}
current—next=*head—next;
*head=*head—next;
free (temp) ;
return;
}
Which of the following is true for the above given
code?
(a) The given code is used to delete the last
node in a circular linked list.
(b) The given code is used to delete all the
nodes in a circular linked list
(c) The given code is used to delete the first
node in a circular linked list
(d) The given code is used to delete the middle
node in a circular linked list.

Q.10 Consider the following sequence of operation on

given link list;

info next info

Wl 5]

info next

%—4 8 ‘nmw

next

P=getnode () ;
info (P) =6;
next (P)=1ist;
list=P;
P=1list;
list=next (P) ;
X=info (P) ;

freenode (P) ;

Postal Study Package PIPX]

Q.9 Consider the following given code:

Q.11

Programming and Data Structures | 171

The above sequence of operation to linked list
results into

(a) Updation of a node

(b) Deletion of a node

(c) Linked list remains the same

(d) None of the above

Void main()

{
int *mptr, *cptr;
mptr=(int*)malloc(size of (int)) ;
printf (“%d4”, *mptr) ;
int*cptr=(int*)calloc(size of (int));
printf (“%d”, *cptr) ;

}

What is the output of the above program?

(a) grabagl, 0 (b) 0O, grabagl

(c) grabagl, grah (d) 0,0

Q.12 The following C function takes single linked list

of integers as parameter and rearrange the
elements of the list. The function is called with
the list containing integers 10, 20, 30, 40, 50,
60, 70 in given order and generate output as 20,
10, 40, 30, 60, 50, 70 after completion. What will
be the correct options files so the we get desired
output?
struct node
{

int val;

struct node * next;

}

void Altswap(struct node * list)

{
struct node *p, *q;
int temp;
if (1 list|| list — next) return;
p = list; g = list = next;
while (g)
{

>N =< XS

C www.madeeasypublications.org

Theory with Solved Examples

MRDE ERSY

Which of the following represent the time
complexity of above two operations respectively?
(@) O(n), 0(n) (b) O(n), O(1)
(c) O(1),0(1) (d) O(1),0(n)

Q.17 Consider the linked list of integers represented

by the following diagram.

F»{so‘ o [-|20| o |~ 7 [0 }+[12] o |~10|nULL]

Head

Run the following code with the above list of
integers.
Node * Prev, *nodeToDele;
Prev = Head — next;
nodeToDele = (struct node *) malloc(sizeof
(struct node));
nodeToDele — item = 28;
nodeToDele — next = Prev — next;
Prev — next = nodeToDelg;
Assume that the following structure is used to
create a node in the list.
struct Node
{
int item;
Node * next;
b
Which of the following is the effect of code?
(a) Element 28 becomes the first elements of
the list.
(b) Element 28 becomes the second element of
the list.
(c) One element is deleted from the list.
(d) Element 28 becomes the 3 element of the
list.

Q.18 Consider a containing nnodes given below :

//P
T | e | 5

/

Head

We want to insert an new node in the given linked
list after node P. Which of the following sequence
of operation is correct?
(@ 1.new — next = P — next;

2. new = P — next;

Postal Study Package PIPX]

Programming and Data Structures | 173

.new — prev = P;

. (P — next) — prev = next;
.new — next = P — next;
.new — next = P;

.New — prev — P;

. (new — next) — prev = new;
.new — next = P — next;

. P — next = new;

.new — prev = P;

. (new — next) — prev = new;
. hew — next — next;

. P — next = new;

3. new — prev = P;

4. (P — next) — prev = new;

N = WD = DN =2 MO

Q.19 Inadoubly linked list organization, insertion of a

record in end involves modification of

for existing list.

(@) one pointer

(c) multiple pointer

(b) two pointer
(d) no pointer

Q.20 Consider the following code for single linked list:

Struct void Modified (Struct node ** head)
{

Struct node *X = *head;

Struct node *Y;

Struct node *Z = NULL;

while (X I= NULL)

{

Y = X = next;

X — next = Z;

Z=X;
X=Y:
}
*head = Z;

}

If head is a pointer to a pointer to the first node
of the list and it is passed to the ‘Modified’
function then find the list after executing the
function.

(a) It adds a new node at the first

(b) It adds a new node at the last

(c) It keeps the list as same

(d) It reverses the list

(www.madeeasypublications.org

Theory with Solved Examples

MRDE ERSY

Postal Study Package PIPX]

Q.24 Let ‘p’ be a pointer of NODE (str data, NODE *

next) as shown in the figure in a singly linked
list.

o LB-CH-CB-08-0
p

Consider ‘g’ to be another pointer of same data

type as ‘p’.

g = p — next

p — next — next = g — next — next

p — next = next = g — next = next

After performing above operations, what will be

remaining number of nodes accessible from start

pointer.

(@ 5 (b) 3

(c) 4 (d) 2

Q.25 Consider the following C program execute on a

singly linked list numbered from 1 to ncontaining
atleast 2 nodes:
struct Listnode
{
int data;
struct Listnode *next;
b
void fun (struct Listnode *head)
{
if (head == NULL || head — next ==NULL)
return;
struct Listnode * tmp = head — next;
head — next = tmp — next;
free (tmp);
fun (head — next);

}

Which of the following represents the output of
above function fun’?
(@) It reverses the every 2 adjacent nodes
linked list
(b) Every odd number nodes of given linked
list will be deleted
(c) Every even number nodes of given linked
list will be deleted
(d) It reverses the linked list and delete
alternate nodes

S Student's
Assignments

Programming and Data Structures | 175

Q.26 The following C function takes a singly linked

list as input argument. It prints its elements from
the end using with the help of some other data
structure. Some part of the code is left blank.

typdef struct node
{

int value;
struct node * next;
}
Node;
void printlist (node * head)
{

if (I head) return;

}

Choose the correct alternative to replace the blank

line.

(@) printf (“%d”, head — data);
printlist (head — next);

(b) while (node! = Null)
{ Node = Node — next
printf(“%d”, node — data);
}

(c) printlist (head — next);
printf(“%d”, head — data);

(d) None of these

Answer Key:

. (@) 2. (a) 3. (b) (c) 5. (a)
d) 7. (b) 8. (d) () 10. (c)
a) 12. (d) 13. (¢ 14. (b) 15. (b)
b) 17. (d) 18. (c) 19. (d) 20. (d)
o 22 (q 23. (4) 24. (b) 25. (c)

Explanations

(a)

In a linked list, a node consists of 2 parts: data
and next pointer which stores address of next
node.

(www.madeeasypublications.org

Theory with Solved Examples

176 | Computer Science & IT

3.

(@Y Theory with Solved Examples

|a|2ooo|——|b|3ooo}——{c‘NULL‘

1000 2000 3000

(a)

To delete a node whose location is given because
before we remove the node (say of locations)
from the linked list, we need to store the address
of next node (i.e., 4" node) into the link part of
24 node.

If this deletion is performed using singly linked
list, we need two pointers, prev (to store address
of second node) and temp (to store address of
third node). While in doubly linked list, this
deletion can be performed using only one pointer.

Ll H‘THH

prev temp

|||H||H\T\H\H

temp

(b)

Binary search using linked list takes O(n) time
because finding middle takes O(n) time as we
have to till last node.

(a)
To find k™ node from the node
struct node {
int data;
struct node *next;
Vi
struct node* getkNode (strcut node*
head int k)
{
int n=0;
struct node *temp=head;
//count total nodes in linked list
while (temp)
{
temp=temp—next;

n++;

}

Postal Study Package PIPX]

MRDE ERSY

//if total nodes more than k

if (n>=k)
{
//return (n-k+1) *® node from
beginning
temp=head;
for (int i=n, i<n-k+1, i++)
{
temp=temp—next;
!
}
return temp;
}
(d)
while (temp—link!=null)
{
temp=temp—1link;
}
(b)
nitally [1]} 3] |—{a] |

2]
T T

a head

L]
head A
| | | | ‘ | | ‘ | I| |
[| |T [
head b A X a

Initially |1| F—+12|
tr

head a b
After while loop runs once:

PN
I;I H;\ 2] |

head a

o —>|

if(b — next == Null) - false
b =b — next

MERDE ERSY

www.madeeasypublications.org)

	Content_Programming & Data Structures.pdf
	Binder1_curve.pdf
	01. Programming Methodology_Final.pdf
	02. Arrays_Final.pdf
	03. Stack_Final.pdf
	04. Queue_Final.pdf
	05. Linked Lists_Final.pdf
	06. Trees_FInal.pdf
	07. Hashing Techniques_Final.pdf

