POSTAL Book Package

2021

Computer Science & IT

Objective Practice Sets

Programming and Data Structure		Contents
SI.	Topic	Page No.
1.	Programming Methodology	2
2.	Arrays	35
3.	Stack	41
4.	Queue	54
5.	Linked Lists	61
6.	Trees	75
7.	Hashing Techniques	96

Note: This book contains copyright subject matter to MADE EASY Publications, New Delhi. No part of this book may be reproduced, stored in a retrieval system or transmitted in any form or by any means.

Violators are liable to be legally prosecuted.

- Q.1 Which of the following C expressions access the (i, j)th entry of an $(m \times n)$ matrix stored in column major order?
 - (a) $n \times (i-1) + j$ (b) $m \times (j-1) + i$
 - (c) $m \times (n-j) + j$ (d) $n \times (m-i) + j$
- **Q.2** Consider 3 dimensional Array *A*[90] [30] [40] stored in linear array in column major order. If the base address starts at 10, what is the location of A [20] [20] [30]? Assume the first element is stored at A[1][1][1].
- Q.3 Consider a 3-heap tree which is similar to 2-heap tree. Every node in 3-heap contains maximum of 3-children. If Array is used to store the element of 3-heap, find the children of node i? Assume the first element of array is at 1.
 - (a) 3i, 3i + 1, 3i + 2 (b) 3i 1, 3i, 3i + 1
 - (c) 3i + 1, 3i + 2, 3 (d) None of these
- Q.4 In a compact single dimensional array representation for lower triangular matrices of size $n \times n$, non-zero elements of each row are stored one after another, starting from the first row, the index of the (i, j)th element of the lower triangular matrix in this new representation is
 - (a) i + j
- (b) i + j 1
- (c) $j + \frac{i(i-1)}{2}$ (d) $i + \frac{j(j-1)}{2}$
- Q.5 Consider the following function: int search (int A[], int k, int l, int h) int m; if (l == h)if (k == A[l]) return l; else return -1; $m = \lfloor (l + h)/2 \rfloor$;

```
return search (A, k, l, m);
else
return search (A, k, m + l, h);
```

Above function is implemented to search a key in the sorted array with binary search concept. Find the index of key 15 returned by the above function, if array has the following elements and l = 0, h = 8 are passed to the function along with array and key.

A 12 14 15 15 15 18 110 120 125 0 1 2 3 4 5 6 7 8

- (a) 2
- (b) 3
- (c) 4
- (d) None of these
- Q.6 Consider a two-dimensional array with elements stored in the form of lower triangular matrix. How many elements must be crossed to read A[4, 2] from the array A[-6,..., +8, -6,..., +8] whose base address is 1000? (Assume elements are stored in row major order).
- Q.7 Consider the following C code int *P, $A[3] = \{0, 1, 2\};$ P = A: *(P + 2) = 5;

$$P = A++;$$

* $P = 7;$

What are the values stored in the array A from index 0 to index 2 after execution of the above code?

- (a) 7, 5, 2
- (b) 7, 1, 5
- (c) 0, 7, 5
- (d) None of these
- Q.8 Let's look about the algorithm:

```
int temp, j, i;
for (i = 1; i < n; i++)
    temp = A[i];
```

if $(k \le A [m])$


```
for (j = i - 1; j \ge 0 \&\& (A([j] > \text{temp}); j - -)
A[j+1] = A[j];
A[i] = \text{temp};
```

If the array is in reverse sorted order then time complexities will be

- (a) O(n)
- (b) $O(n \log_2 n)$
- (c) $O(n^2)$
- (d) $O(\log_2 n)$
- Q.9 Suppose that we have an array of *n* data records to sort and that the key of each record has the value 0 or 1. An algorithm for sorting such a set of records require _____ running time.
 - (a) O(1)
- (b) O(n)
- (c) $O(n^2)$
- (d) None of these
- Q.10 Consider an array A has n-elements in which every element is less than 2n. What is the running time to check whether the given array has distinct elements?
 - (a) O(1)
- (b) O(n)
- (c) $O(n \log n)$
- (d) $O(n^2)$
- Q.11 Given an array with both +ve and -ve numbers. Find the two elements such that their sum is closest to zero

What is the tightest upper bound to solve this problem?

- (a) $O(n \log n)$
- (b) $O(n^2)$
- (c) $O(n^3)$
- (d) O(n)
- Q.12 What is the output of the following C code? Assume that the address of X is 2000 (in decimal) and an integer requires four bytes of memory. int main ().

```
unsigned int \times [4] [3] = {{1, 2, 3}, {4, 5, 6}, {7, 8,
9}, {10, 11, 12}}
printf ("%u,%u,%u", X+3, * (X+2) + 3);
(a) 2036, 2036, 2036
```

- (b) 2012, 4, 2204
- (c) 2036, 10, 10
- (d) 2012, 4, 6

Q.13 Consider the following C function:

```
#include <stdio.h>
int main(void)
    char c[] = "ICRBCSIT17";
    char *p = c;
    printf("%s", c+2[p] - 6[p] - 1);
    return 0;
```

The output of the program is

- (a) SI
- (b) IT
- (c) T1
- (d) 17
- Q.14 The output of the following program is main()

```
static int x[] = \{1, 2, 3, 4, 5, 6, 7, 8\};
   int i;
   for (i = 2; i < 6; ++i)
   x[x[i]] = x[i];
   for (i = 0; i < 8; ++i)
   printf("\%d", x[i]);
(a) 12335578 (b) 12345678
```

(c) 87654321 (d) 12354678

- Q.15 Which of the following is true?
 - (a) In sorted array of 'n' distinct elements, deletion of an element from beginning takes $O(\log n)$ time.
 - (b) In sorted array of 'n' distinct elements, insertion of an element takes O(log n) time.
 - (c) In sorted array of 'n' distinct elements, finding ith largest element take O(1) time.
 - (d) In unsorted array of 'n' distinct elements, insertion of an element take $\Omega(\log n)$ time.
- Q.16 Consider the function given below, which should return the index of first zero in input array of length 'n' if present else return -1.

```
int index of zero (int[] array, int n) {
for (int i = 0; P; i++);
     if (i = = n)
          return -1;
     return i:
```


For column major order

loc
$$(A(i, j, k))$$
 = Base Address + $(i-1)r_2r_3$ + $(K-1)r_2$ + $(j-1)$
= 10 + 19 * (30) (40) + 29 * (30) + 19 = 23699

3. (b)

Children of 4:

$$4 * 3 - 1 = 11$$

 $4 * 3 = 12$
 $4 * 3 + 1 = 13$

 \therefore (i*3)-1, i*3 and (i*3)+1 are children of i.

4. (c)

The number of elements to be skipped to reach to i^{th} row = $\frac{i(i-1)}{2}$ to reach to j^{th} column = $\frac{i(i-1)}{2}+j.$

5. (a)

 $15 \Rightarrow l == h \text{ is true and } k == A[l].$ [l = h = 2]

.. Option (a) is correct.

6. (63)

The given lower triangular matrix can be represented as

Let (i, j) be the element to be accessed.

We must cross upto $(i-1)^{th}$ row.

Number of elements upto $(i-1)^{th}$ row or 10^{th} row $= 1 + 2 + 3 + \dots + [(i-1) - (l_{bi}) + 1]$

$$[l_{bi} \rightarrow \text{lower bound of } i]$$

$$= 1 + 2 + 3 + \dots (3-(-6) + 1)$$

= 1 + 2 + 3 + \dots + (10)

$$=\frac{10\times11}{2}=55$$

In i^{th} row we must cross $(j - l_{bi})$ elements. $[l_{bi} \rightarrow \text{lower bound of } j]$

$$= 2 - (-6) = 8$$

 \therefore In total = 55 + 8 = 63 elements need to be crossed.

7. (d)

P = A + +; produces compiler error.

So execution of the given code is not possible. A++ asks the compiler to change the base address of an array, but compiler knows A is array hence once it is declared, compiler will not allow to change the address.

8. (c)

In this programme first for loop will run *n*-times and second for loop also run n-times, because our array is reverse sorted then second loop will also run and the total time complexity for reverse sorted order will be $O(n^2)$.

Using counting sort, it takes linear time.

10. (b)

Using counting sort, single scan will identify if there exist any repeated element in the given array. Therefore, it takes O(n) time.

11. (a)

- 1. First sort elements $\rightarrow n \log n$.
- 2. Add (i) and in temp at last and before that set +ve closest = max and -ve closest-min temp = A[i] + A[j]if (temp > 0)if (temp < positive closest)

positive closest = temp;