

ESE 2019

Preliminary Examination

Detailed Solutions of Electrical Engineering (Set-A)

Scroll down for detailed solutions

www.madeeasy.in

Corporate Office: 44-A/1, Kalu Sarai, New Delhi - 110016 | Ph: 011-45124612, 9958995830

Delhi | Hyderabad | Noida | Bhopal | Jaipur | Lucknow | Indore | Pune | Bhubaneswar | Kolkata | Patna

ESE 2019 | Preliminary Examination Electrical Engineering | Set-A

Expe	ected Cut	off of ESE	E 2019 Pro	elims	Act	ual Cuto	ff of ESE	2018 Preli	ims
Branch	Gen	OBC	SC	ST	Branch	Gen	ОВС	SC	ST
CE	180-190	170-180	150-160	150-160	CE	207	194	169	188
ME	190-200	180-190	160-170	160-170	ME	256	255	220	223
EE	230-240	220-230	190-200	190-200	EE	230	218	190	191
E&T	210-220	200-210	170-180	170-180	E&T	213	206	173	155

Electrical Engineering Paper Analysis ESE 2019 Prelims Exam

SI.	Subjects	Number of Questions
1	Engineering Mathematics	12
2	Materials Science	14
3	Network Theory	12
4	Signals and Systems	13
5	Power Systems	14
6	Measurements	11
7	Computer Fundamentals	8
8	Digital Electronics	6
9	Microprocessos	6
10	Analog Electronics	12
11	Communications	7
12	Control Systems	11
13	Electrical Machines	14
14	Power Electronics	10
15	EMT	0

UPSC ESE/IES Prelims 2019 Electrical Engineering analysis and expected cutoff by MADE EASY faculty https://youtu.be/Ik8Ah8GwOsg

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 😡 info@madeeasy.in 🕢 www.madeeasy.in

Page 2

Mains Exclusive Batches for ESE 2019 **Conventional Questions** Practice Programme

Commencing from 20th Feb, 2019

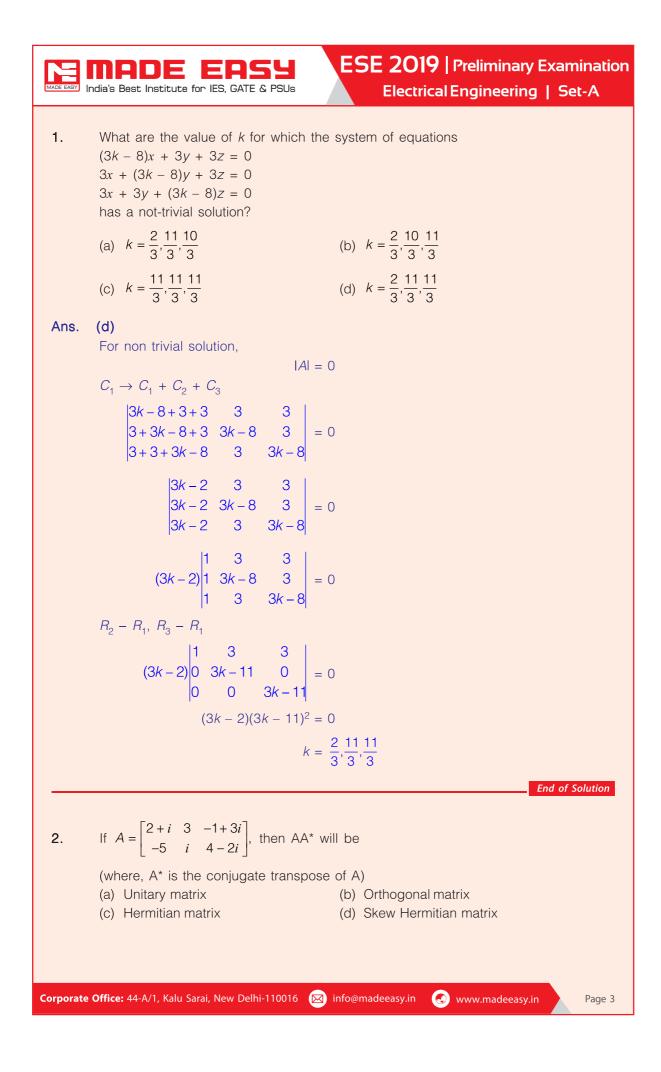
Commencing from 17th Mar, 2019

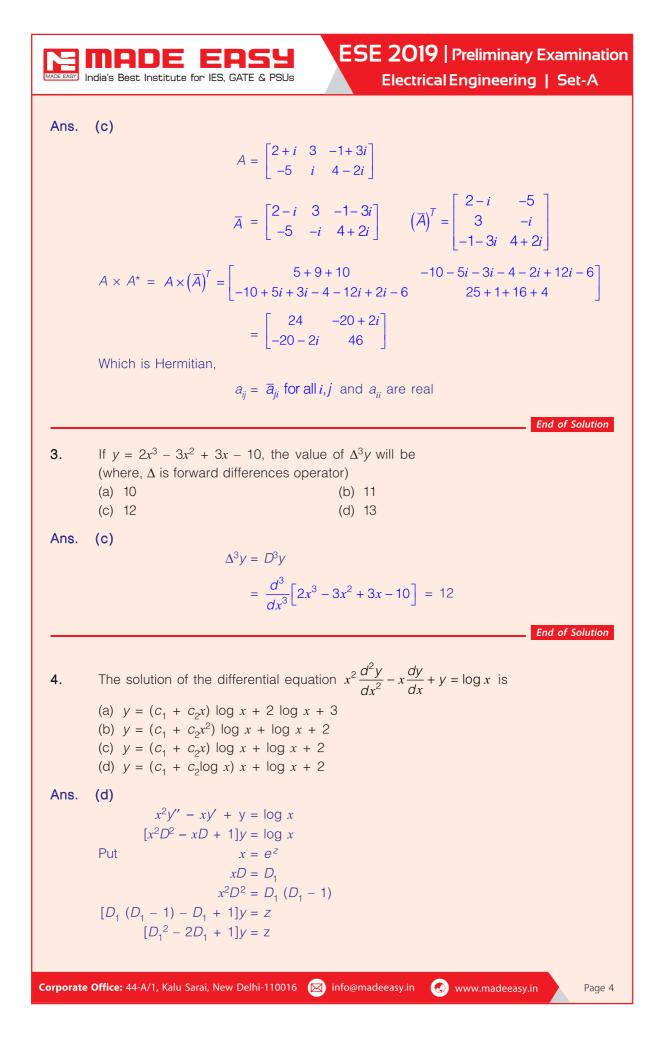
Test series will be conducted at all MADE EASY centres across India.

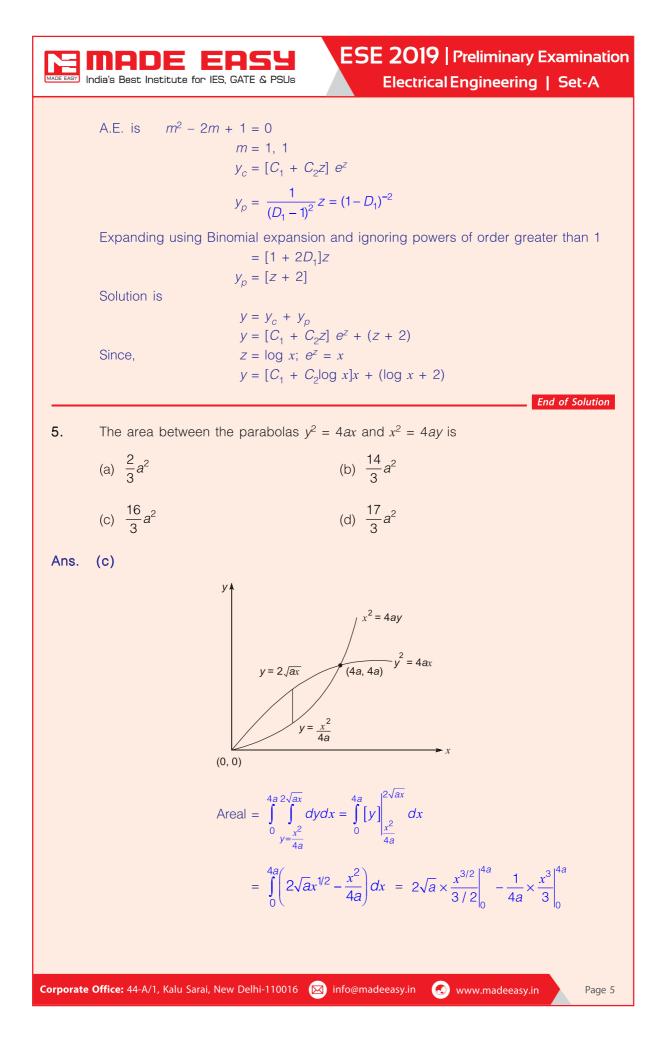
These batches

Delhi Centre.

are offered only at


Features :


- Very useful to develop numerical solving approach & improving writing skills.
- Special focus on improving answer layout specially for theory questions.
- Classes will be delivered by senior faculties.
- Updated Mains workbook for every subject having varied practice question sets.
- Test series will be conducted on every Sunday in synchronisation with the subject taught in class.
- Discussion on probable questions.
- Comprehensive and in-depth discussion on variety of conventional questions, thus strengthening fundamental concepts.


atch etails		Duration 00 - 350 hours 5-6		Class Duration week and 6-7 hours a day	Test Series Every Sunday
reams	Batch Code	Batch Commencing D	ate	Venue (Delhi)	Timing
ME	А	20-Feb-2019		Ghitorni Centre	7:30 AM to 1:30 PM
ME	В	20-Feb-2019		Ghitorni Centre	3:00 PM to 9:00 PM
ME	С	20-Feb-2019		Saket Centre	7:30 AM to 1:30 PM
CE	А	21-Feb-2019		Ignou Road Centre	7:30 AM to 1:30 PM
CE	В	21-Feb-2019		Kalu Sarai Centre	3:00 PM to 9:00 PM
EE	А	22-Feb-2019		Lado Sarai Centre	7:30 AM to 1:30 PM
EE	В	22-Feb-2019		Kalu Sarai Centre	3:00 PM to 9:00 PM
EC	А	22-Feb-2019		Lado Sarai Centre	7:30 AM to 1:30 PM


Program	Ex. MADE EASY Students Enrolled in Postal, Rank Improvement, Mains, GS, Post-GATE, ESE+ GATE, GATE Batches	Non MADE EASY students
Mains Exclusive Batch (Inclusive of ESE-2019 Mains Offline Test Series)	₹ 18,500	₹ 22,500
ESE 2019 Mains Offline Test Series	₹ 2,500	₹ 3,500
		All Fees are inclusive of GST

Click here to enroll

$$= 216abc \int_{r=0}^{1} r^{8} dr \int_{\phi=0}^{\pi/2} \sin^{2} \phi \cos^{2} \phi d\phi \int_{\theta=0}^{\pi/2} \sin^{5} \theta \cdot \cos^{2} \theta d\theta$$
$$= 216abc \left[\frac{r^{9}}{9} \right]_{0}^{1} \left[\frac{1 \times 1}{4 \times 2} \times \frac{\pi}{2} \right] \times \left[\frac{(4 \times 2)(1)}{7 \times 5 \times 3 \times 1} \right]$$
$$= \frac{4}{35} abc\pi$$

End of Solution

is

7. The solution of the partial differential equation
$$x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} = (x+y)z$$

(a) $f\left(\frac{1}{x} - \frac{1}{y} - \frac{xy}{z}\right) = 0$ (b) $f\left(\frac{1}{xy}, \frac{xy}{z}\right) = 0$
(c) $f\left(\frac{1}{x} - \frac{1}{y}, xyz\right) = 0$ (d) $f\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}, \frac{xy}{z}\right) = 0$

Ans. (a)

Auxiliary equation of the given equation is

 $\frac{1}{x}$

Consider,

$$\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{(x+y)z}$$
$$\frac{dx}{x^2} = \frac{dy}{y^2} \Rightarrow -\frac{1}{x} = -\frac{1}{y} + C$$
$$-\frac{1}{y} = C_1$$

Also,

л.

$$\frac{dx/x}{x} = \frac{dy/y}{y} = \frac{dz/z}{x+y} = \frac{\frac{dx}{x} + \frac{dy}{y} - \frac{dz}{z}}{(x+y) - (x+y)}$$
$$\frac{dx}{dx} + \frac{dy}{dy} - \frac{dz}{dz} = 0$$

$$\Rightarrow \qquad \ln x + \ln y - \ln z = \ln C_2$$

or
$$\frac{xy}{z} = C_{z}$$

$$\therefore \qquad f\left(\frac{1}{x} - \frac{1}{y}, \frac{xy}{z}\right) = C$$

End of Solution

	India's Best Institute for IES, GATE & P	ESE 2019 Preliminary Examin Electrical Engineering Set-	
8.	The complex number $\left(\frac{2+i}{3-i}\right)^{2}$	2 is	
	(a) $\frac{1}{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$	(b) $\frac{1}{2}\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$	
	(c) $\frac{1}{2}(\cos\pi + i\sin\pi)$	(d) $\frac{1}{2}\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right)$	
Ans.	(b)		
	$\frac{(2+i)^2}{(3-i)^2} = \frac{4}{9}$	$\frac{-1+4i}{-1-6i} = \frac{3+4i}{8-6i} = \frac{3+4i}{2(4-3i)} \times \frac{4+3i}{4+3i}$	
	= 12	$\frac{2-12+25i}{2(16+9)} = \frac{i}{2} = \frac{1}{2} \left[e^{i\pi/2} \right]$	
		End of Solu	ıtion
9.	If n is a positive integer then	n, $(\sqrt{3} + i)^n + (\sqrt{3} - i)^n$ is	
	(a) $2^n \sin \frac{n\pi}{6}$	(b) $2^n \cos \frac{n\pi}{6}$	
	(c) $2^{n+1}\cos\frac{n\pi}{6}$	(d) $2^{n+1} \sin \frac{n\pi}{6}$	
Ans.	(c)		
	$2^{n} \left[\frac{\sqrt{3}}{2} + \frac{i}{2} \right]^{n} + 2^{n} \left[\frac{\sqrt{3}}{2} - \frac{i}{2} \right]^{n}$		
	= 2 ^r	$\int_{0}^{n} \left[\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right]^{n} + 2^{n} \left[\cos\frac{\pi}{6} - i\sin\frac{\pi}{6}\right]^{n}$	
		$e^{in\pi/6} + 2^n e^{-in\pi/6}$	
	= 2	$\frac{n\pi}{6} \left[2\cos\frac{n\pi}{6} \right] = 2^{n+1}\cos\frac{n\pi}{6}$ End of Solu	ition
10.	The nature of singularity of fu	unction $f(z) = \frac{1}{\cos z - \sin z}$ at $z = \frac{\pi}{4}$ is	
10.	(a) Removable singularity	(b) Isolated singularity	
	(c) Simple pole	(d) Essential singularity	
Corporate	e Office: 44-A/1, Kalu Sarai, New Delhi-110	0016 🖂 info@madeeasy.in 📀 www.madeeasy.in 🛛 P	age 8

General Studies & Engineering Aptitude Batches for ESE 2020 (Preliminary Examination)

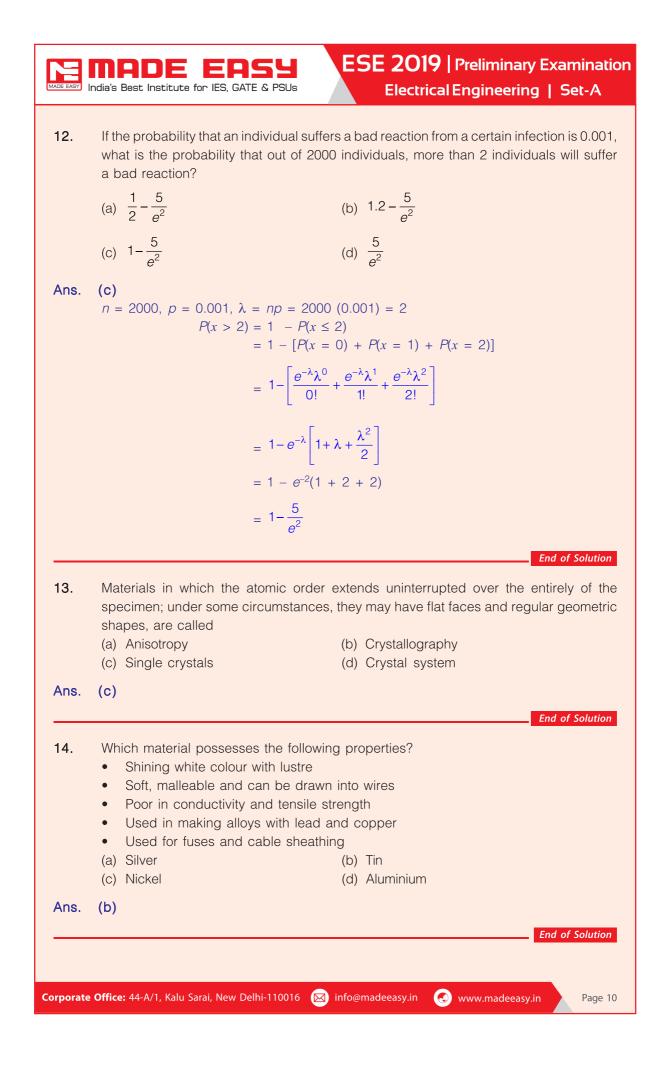
Syllabus Covered

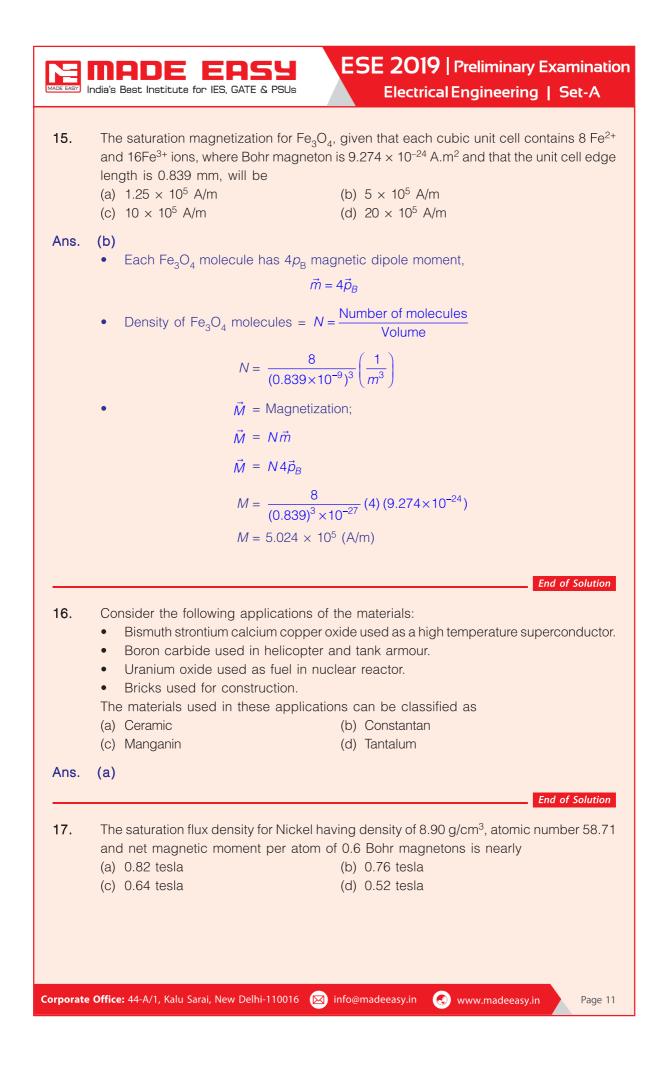
- 1. Current issues of national and international importance relating to social economic and industrial development.
- 2. Engineering Aptitude covering Logical reasoning and Analytical ability.
- 3. Engineering Mathematics and Numerical Analysis.
- 4. General Principles of Design, Drawing, Importance of Safety.
- 5. Standards and Quality practices in production, construction, maintenance and services.
- 6. Basic of Energy and Environment : Conservation, Environmental pollution and degradation, Climate Change, Environmental impact assessment.
- 7. Basic of Project Management.
- 8. Basics of Material Science and Engineering.
- 9. Information and Communication Technologies (ICT) based tools and their applications in Engineering such as networking, e-governance and technology based education.
- 10. Ethics and values in engineering profession.

Course Duration	Timings	Teaching Hours
Regular Batches : 2.5 months	Regular : 6 to 7 days a week and 4-6 hours a day	250-300
Weekend Batches : 4 months	Weekend : Sat, Sun & public holiday, 8 hours each day	hours

Batch Type	Commencing Dates	Venue	Timing
Regular Batch	20 th Feb, 2019	Ghitorni (Delhi)	8:00 AM to 12:00 PM
Weekend Batch	24 th Feb, 2019	Ghitorni (Delhi)	8:00 AM to 5:00 PM
Weekend Batch	24 th Feb, 2019	Noida Centre	8:00 AM to 5:00 PM

	Fee Structure
Non-MADE EASY Students	Ex. MADE EASY Students Enrolled in Postal, Rank Improvement, Mains, GS, GATE, GATE + ESE Batches
₹ 25,000 • GS & Engg Aptitude Books will be issued.	 • GS & Engg Aptitude Books will NOT be issued. • Interested students can avail books by paying the fee of Rs. 2,000/-


Corporate office : 44-A/1, Kalu Sarai, New Delhi - 1100 16 🕓 011-45124612, 9958995830


Noida office : D-28, Sector - 63, Noida, Uttar Pradesh - 201301 🕓 0120-6524612, 08860378009

ADMISSION OPEN

EXAMPLE 1 Solve the Heiter Let the for the SLATE 4 Parks (c)

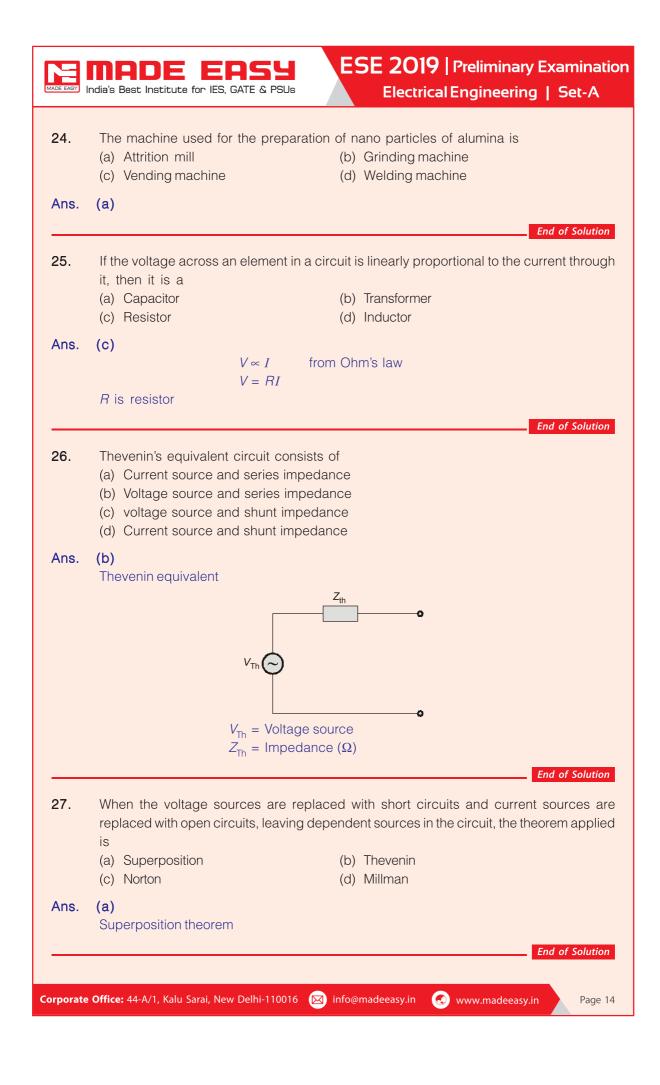

$$Provide Heiter Let the for the SLATE 4 Parks (c)
$$Provide Heiter Let the for the SLATE 4 Parks (c)
Provide Heiter Let the formation (c)
Provide Heiter Le$$$$

	Image: Sest Institute for IES, GATE & PSUs ESE 2019 Preliminary Examination Electrical Engineering Set-A
Ans.	(c) Atomic density = $N = \frac{\rho N_A}{A_{Ni}} \left(\frac{\text{atoms}}{m^3}\right)$
	$\rho = \text{density} = 8.9 \times 10^6 \left(\frac{g}{m^3}\right)$
	N_A = Avogadro number = 6.02 × 10 ²³ (atoms/mole) A_{Ni} = Atomic number of nickel = 58.71 (g/mole)
	$N = \frac{\rho N_A}{A_{Ni}} = \frac{(8.9 \times 10^6) (6.02 \times 10^{23})}{58.7}$
	= $9.127 \times 10^{28} \text{ (atoms/m}^3)$ M = Nm
	M = Magnetization $m =$ Magnetic dipole moment = 0.6 p_B
	$M_{s} = Nm$ $M_{s} = (9.127 \times 10^{28}) (0.6) (9.27 \times 10^{-24})$ $M_{s} = 50.764 \times 10^{4} (A.m^{2})$ $B_{s} = \mu_{0} M_{s}$
	$B_s = 4\pi \times 10^{-7} (50.764 \times 10^4)$ $B_s = 0.637$ Tesla End of Solution
18.	The Temperature at which iron ceases to be ferromagnetic and becomes paramagnetic
	is (a) Curie-Weiss point (b) Thermo-magnetic point (c) Ferro-paramagnetic point (d) Curie point
Ans.	(d) End of Solution
19.	 Fick's laws refer to (a) Finding whether a semiconductor in <i>n</i> or <i>p</i> type (b) Diffusion (c) Crystal imperfections (d) Electric breakdown
Ans.	(b)
	End of Solution
orporate	Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 📀 www.madeeasy.in Page 12

20.		to the direction of motion of a charged partic ular to both the magnetic field and the directio
	of motion of the particle. This phenome (a) Flux effect (c) Magnetic field effect	-
Ans.	(b)	
21.		End of Solutio V and is found to take 15 minutes to bring 1 k heat of water is 4200 J/kg/°C, the heat efficienc
	(a) 87.3%	(b) 83.6%
	(c) 79.3%	(d) 75.6%
Ans.	(c)	
	Heat = $mC\Delta t$ m - Mass	
	<i>C</i> - Specific heat	
	Δt - Change in temperature	
	Output heat = $1 \times 10^3 \times 4$ = 397000 Jou	
		$\frac{t}{15 \times 60} = \frac{357000}{15 \times 60} = 396.67$ Watt
	Input power = 500 Watt	
	Heat efficiency = $\frac{396.67}{500} \times 10$	0 = 79.3% End of Solutio
22.	With reference to nano materials, the p	
	(a) Nano centimeter	(b) Nanometer
	(c) Nano micrometer	(d) Nano millimeter
Ans.	(b)	End of Solutio
23.	Consider the following applications:	
	High temperature heat engines.	
	 Nuclear fusion reactors. Chemical processing industry 	
	Chemical processing industry.Aeronautical and space industry.	
	Which one of the materials will be use	d for these applications?
	(a) Zironia	(b) Alumina
	(c) Ceramic	(d) Silicon carbide
Ans.	(d)	
		End of Solutio

RANK IMPROVEMENT BATCHES for ESE 2020 & GATE 2020 at Delhi Centre

Rank Improvement Batches are designed with a motive to provide more practice to students by focusing on numerical solving. Supplemented with exclusive workbooks having variety of questions, makes these batches a complete package to help repeater aspirants who have taken classroom coaching or prepared themselves for these exams to fill the gap and get ready for the next.

FEATURES :

- Comprehensive problem solving sessions
- Smart techniques to solve problems
- Techniques to improve accuracy & speed
- Systematic & cyclic revision of all subjects
- Doubt clearing sessions
- Weekly class tests for performance improvement
- Inclusive of interview guidance for PSUs
- Specially designed workbooks for technical subjects

ELIGIBILITY :

- Ex. MADE EASY students who have undergone classroom coaching from any centre of MADE EASY
- Students who have undergone classroom coaching from any other institute
- Qualified in GATE exam
- Qualified in ESE (Pre/Mains) written exam
- Qualified in any PSU exam
- M. Tech from reputed colleges

🕓 011-45124612 | 🌐 www.madeeasy.in

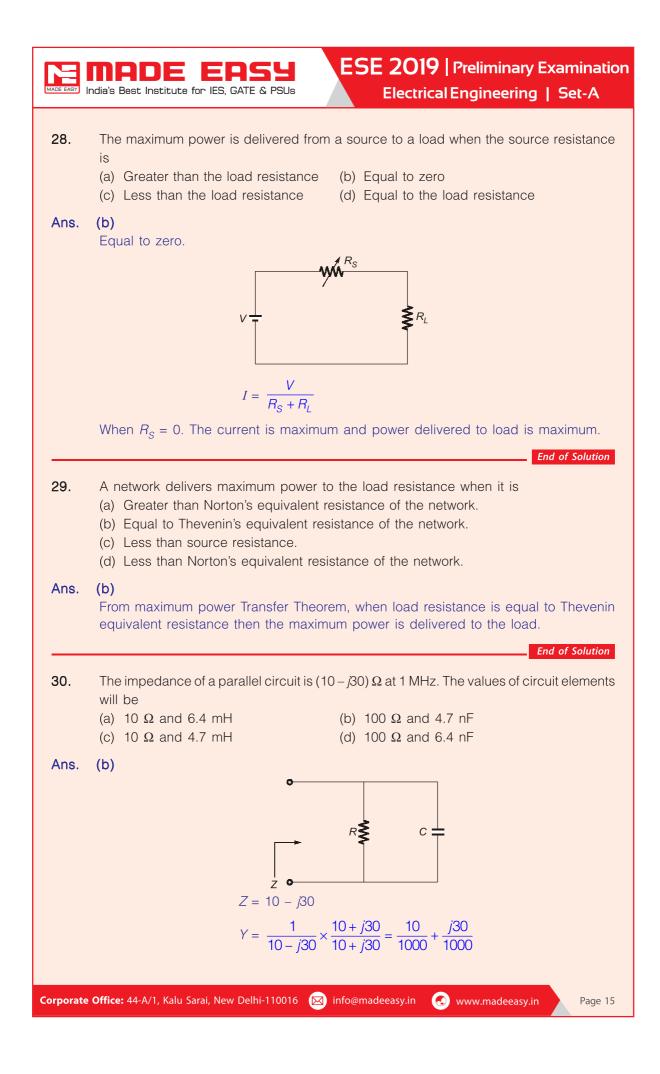
Streams	Timing	Date	Venue
CE	5:00 PM to 9:00 PM	20 th May, 2019	Saket-2
ME	5:00 PM to 9:00 PM	20 th May, 2019	Ghitorni
EE	5:00 PM to 9:00 PM	21 st May, 2019	Lado Sarai-1
EC	5:00 PM to 9:00 PM	21 st May, 2019	Lado Sarai-2

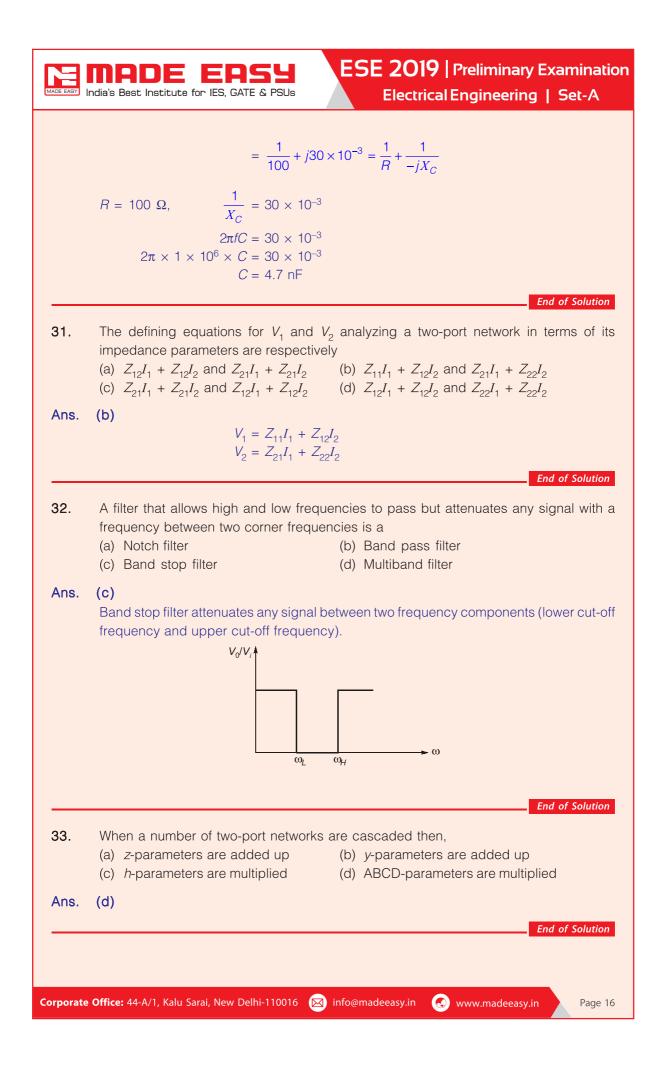
SYLLABUS COVERED

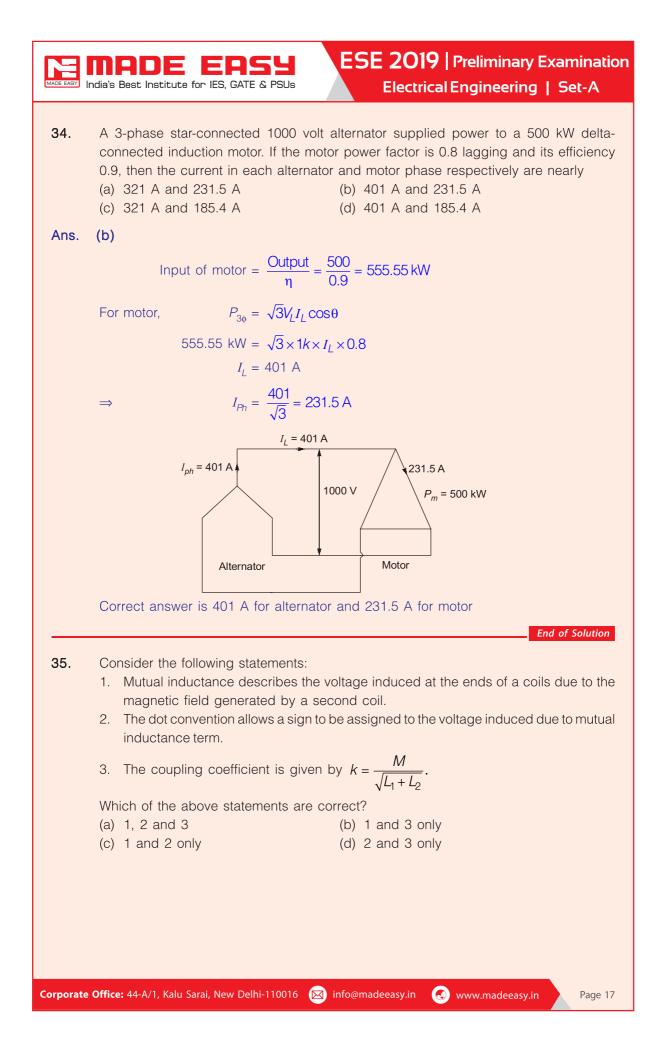
Complete GATE syllabus & Technical syllabus of ESE

ADMISSION OPEN

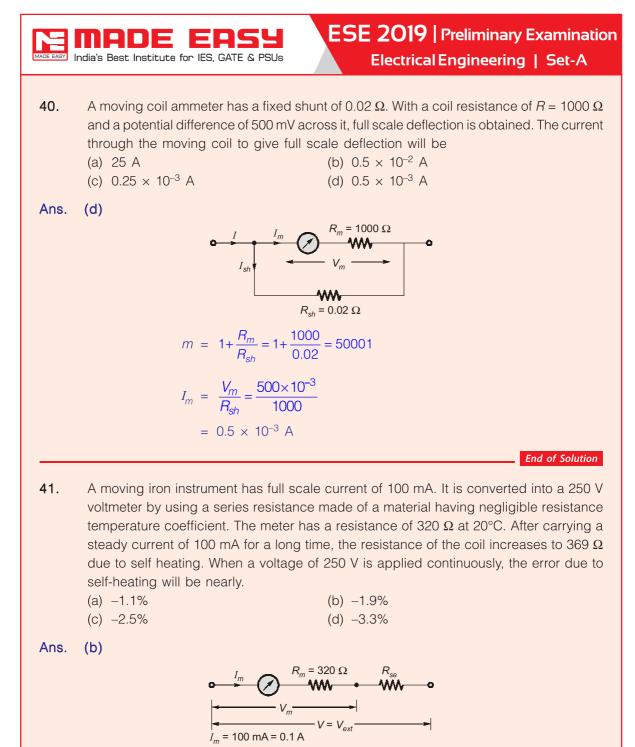
COURSE DURATION

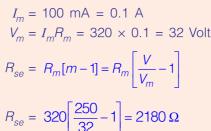

Approximately 5 months 450-475 teaching hours

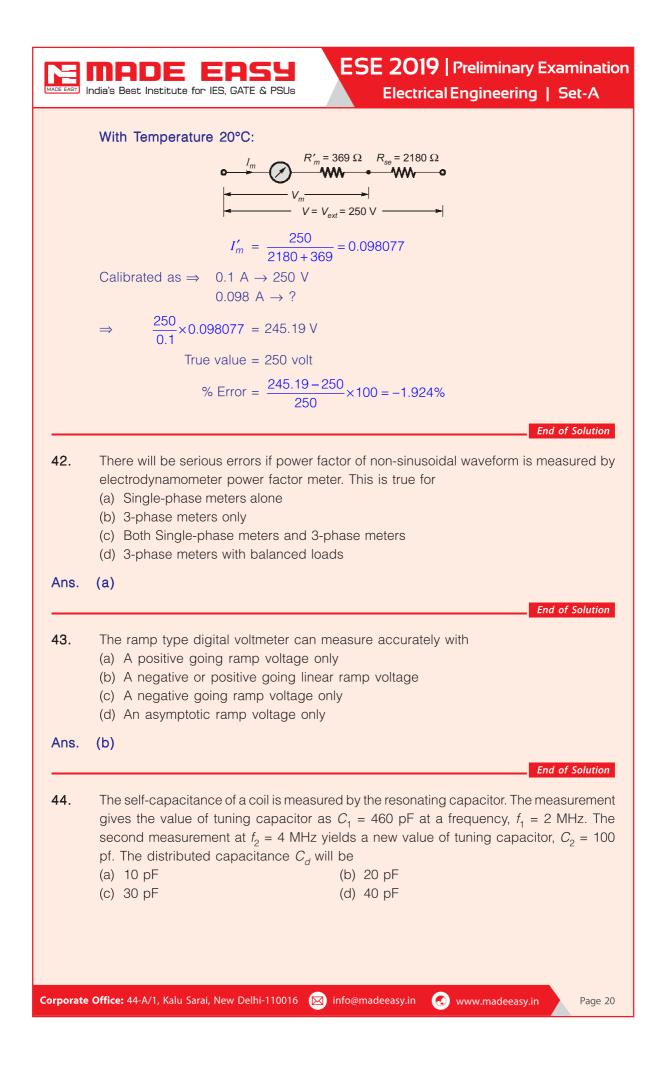

CLASS TIMING


5-6 days a week 4 hours a day

Note : These batches will be focusing on solving problems and doubt clearing sessions. Therefore if a student is weak in basic concepts & fundamentals then he/she is recommended to join regular classroom course.






Ans.	(c)	
	The coupling coefficient is	
	$k = \frac{M}{\sqrt{L_1 L_2}}$	
	$\sqrt{-1-2}$ \therefore 3 rd statement is wrong.	
	o statement is wrong.	
		End of Solution
36.	Consider the following statements:	
	 The rules for series and parallel co for resistors. 	ombinations of capacitors are opposite to those
		ombinations of inductors are same as those fo
	resistors.	
	3. An inductor is a short circuit to do	
	Which of the above statements are co	
	(a) 1 and 2 only (c) 2 and 3 only	(b) 1 and 3 only(d) 1, 2 and 3
		(u) 1, 2 anu 3
Ans.	(d)	
		End of Solution
37.	The standard resistantic scale of wine	
••••	The standard resistor is a coll of wire	of some alloy having the properties of
	Which of the above statements are co	
	Which of the above statements are co (a) Low electrical resistivity and high t	rrect? remperature coefficient of resistance.
	Which of the above statements are co (a) Low electrical resistivity and high t (b) High electrical resistivity and high	rrect? emperature coefficient of resistance. temperature coefficient of resistance.
	Which of the above statements are co (a) Low electrical resistivity and high t (b) High electrical resistivity and high (c) Low electrical resistivity and low te	rrect? emperature coefficient of resistance. temperature coefficient of resistance. emperature coefficient of resistance.
	Which of the above statements are co(a) Low electrical resistivity and high t(b) High electrical resistivity and high(c) Low electrical resistivity and low te(d) High electrical resistivity and low te	rrect? emperature coefficient of resistance. temperature coefficient of resistance. emperature coefficient of resistance.
	Which of the above statements are co (a) Low electrical resistivity and high t (b) High electrical resistivity and high (c) Low electrical resistivity and low te	rrect? temperature coefficient of resistance. temperature coefficient of resistance. emperature coefficient of resistance. emperature coefficient of resistance.
Ans.	Which of the above statements are co(a) Low electrical resistivity and high t(b) High electrical resistivity and high(c) Low electrical resistivity and low te(d) High electrical resistivity and low te	rrect? temperature coefficient of resistance. temperature coefficient of resistance. emperature coefficient of resistance.
	Which of the above statements are co (a) Low electrical resistivity and high t (b) High electrical resistivity and high (c) Low electrical resistivity and low te (d) High electrical resistivity and low te (d) Which one of the following material is u	rrect? temperature coefficient of resistance. temperature coefficient of resistance. emperature coefficient of resistance. <i>End of Solution</i>
Ans.	 Which of the above statements are co (a) Low electrical resistivity and high t (b) High electrical resistivity and high (c) Low electrical resistivity and low te (d) High electrical resistivity and low te (d) Which one of the following material is u instruments? 	rrect? temperature coefficient of resistance. temperature coefficient of resistance. emperature coefficient of resistance. <i>End of Solution</i> sed for the swamping resistance of moving co
Ans.	 Which of the above statements are co (a) Low electrical resistivity and high t (b) High electrical resistivity and low te (c) Low electrical resistivity and low te (d) High electrical resistivity and low te (d) Which one of the following material is u instruments? (a) Carbon 	rrect? comperature coefficient of resistance. temperature coefficient of resistance. comperature coefficient of resistance. <i>End of Solution</i> sed for the swamping resistance of moving co (b) Manganin
Ans. 38.	 Which of the above statements are co (a) Low electrical resistivity and high t (b) High electrical resistivity and low te (c) Low electrical resistivity and low te (d) High electrical resistivity and low te (d) Which one of the following material is u instruments? (a) Carbon (c) Silver 	rrect? temperature coefficient of resistance. temperature coefficient of resistance. emperature coefficient of resistance. <i>End of Solution</i> sed for the swamping resistance of moving co
Ans. 38.	 Which of the above statements are co (a) Low electrical resistivity and high t (b) High electrical resistivity and low te (c) Low electrical resistivity and low te (d) High electrical resistivity and low te (d) Which one of the following material is u instruments? (a) Carbon 	rrect? comperature coefficient of resistance. temperature coefficient of resistance. comperature coefficient of resistance. <i>End of Solution</i> sed for the swamping resistance of moving co (b) Manganin
Ans. 38.	 Which of the above statements are co (a) Low electrical resistivity and high t (b) High electrical resistivity and low te (c) Low electrical resistivity and low te (d) High electrical resistivity and low te (d) Which one of the following material is u instruments? (a) Carbon (c) Silver 	rrect? emperature coefficient of resistance. temperature coefficient of resistance. emperature coefficient of resistance. <i>End of Solution</i> sed for the swamping resistance of moving co (b) Manganin (d) Brass
Ans. 38. Ans.	 Which of the above statements are co (a) Low electrical resistivity and high t (b) High electrical resistivity and low te (c) Low electrical resistivity and low te (d) High electrical resistivity and low te (d) Which one of the following material is u instruments? (a) Carbon (c) Silver 	rrect? emperature coefficient of resistance. temperature coefficient of resistance. emperature coefficient of resistance. <i>End of Solution</i> sed for the swamping resistance of moving co (b) Manganin (d) Brass <i>End of Solution</i>
Ans.	 Which of the above statements are co (a) Low electrical resistivity and high t (b) High electrical resistivity and low te (c) Low electrical resistivity and low te (d) High electrical resistivity and low te (d) Which one of the following material is u instruments? (a) Carbon (c) Silver (b) In a PMMC instrument, the swamping (a) Increase the damping of the instrument 	rrect? comperature coefficient of resistance. temperature coefficient of resistance. comperature coefficient of resistance. <i>End of Solution</i> sed for the swamping resistance of moving co (b) Manganin (d) Brass <i>End of Solution</i> resistor is used to ment.
Ans. 38. Ans.	 Which of the above statements are co (a) Low electrical resistivity and high t (b) High electrical resistivity and low te (c) Low electrical resistivity and low te (d) High electrical resistivity and low te (d) Which one of the following material is u instruments? (a) Carbon (c) Silver (b) In a PMMC instrument, the swamping (a) Increase the damping of the instru (b) Reduce the current within the limit 	rrect? emperature coefficient of resistance. temperature coefficient of resistance. emperature coefficient of resistance. <i>End of Solution</i> sed for the swamping resistance of moving co (b) Manganin (d) Brass <i>End of Solution</i> resistor is used to ment. s.
Ans. 38. Ans.	 Which of the above statements are co (a) Low electrical resistivity and high t (b) High electrical resistivity and low te (c) Low electrical resistivity and low te (d) High electrical resistivity and low te (d) Which one of the following material is u instruments? (a) Carbon (c) Silver (b) In a PMMC instrument, the swamping (a) Increase the damping of the instruution (b) Reduce the current within the limit (c) Compensate for temperature variat 	rrect? emperature coefficient of resistance. temperature coefficient of resistance. emperature coefficient of resistance. <i>End of Solution</i> sed for the swamping resistance of moving co (b) Manganin (d) Brass <i>End of Solution</i> resistor is used to ment. s.
Ans. 38. Ans. 39.	 Which of the above statements are co (a) Low electrical resistivity and high ti (b) High electrical resistivity and low te (c) Low electrical resistivity and low te (d) High electrical resistivity and low te (d) Which one of the following material is u instruments? (a) Carbon (c) Silver (b) In a PMMC instrument, the swamping (a) Increase the damping of the instruction (b) Reduce the current within the limities (c) Compensate for temperature variaties (d) Increase the full-scale sensitivity. 	rrect? emperature coefficient of resistance. temperature coefficient of resistance. emperature coefficient of resistance. <i>End of Solution</i> sed for the swamping resistance of moving co (b) Manganin (d) Brass <i>End of Solution</i> resistor is used to ment. s.
Ans. 38. Ans. 39.	 Which of the above statements are co (a) Low electrical resistivity and high t (b) High electrical resistivity and low te (c) Low electrical resistivity and low te (d) High electrical resistivity and low te (d) Which one of the following material is u instruments? (a) Carbon (c) Silver (b) In a PMMC instrument, the swamping (a) Increase the damping of the instruution (b) Reduce the current within the limit (c) Compensate for temperature variat 	rrect? emperature coefficient of resistance. temperature coefficient of resistance. emperature coefficient of resistance. <i>End of Solution</i> sed for the swamping resistance of moving co (b) Manganin (d) Brass <i>End of Solution</i> resistor is used to ment. s.
Ans. 38. Ans.	 Which of the above statements are co (a) Low electrical resistivity and high ti (b) High electrical resistivity and low te (c) Low electrical resistivity and low te (d) High electrical resistivity and low te (d) Which one of the following material is u instruments? (a) Carbon (c) Silver (b) In a PMMC instrument, the swamping (a) Increase the damping of the instruction (b) Reduce the current within the limities (c) Compensate for temperature variaties (d) Increase the full-scale sensitivity. 	rrect? emperature coefficient of resistance. temperature coefficient of resistance. emperature coefficient of resistance. <i>End of Solution</i> sed for the swamping resistance of moving co (b) Manganin (d) Brass <i>End of Solution</i> resistor is used to ment. s.

Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 info@madeeasy.in 💽 www.madeeasy.in

Page 19

RPSC Mains Batches RAJASTHAN PUBLIC SERVICE COMMISSION

Assistant Engineer Examination, 2018 at Jaipur Centre

Batches Commencing from 17th Jan, 2019

Exam Structure

G.S. + Hindi

- Paper-I Hindi (100 Marks - 3 Hours)
- Paper-II
 Social aspect of Engineering (100 Marks 3 Hours)

Technical Syllabus

- Civil Engineering
 Paper-I (200 Marks 3 Hours)
- Civil Engineering
 Paper-II (200 Marks 3 Hours)

FEE STRUCTURE

SUBJECTS	TOTAL HOURS	NON-MADE EASY STUDENTS	EX-MADE EASY STUDENTS
G.S. + Hindi	225-250 Hours	₹19,500	₹15,500
Tech + G.S. + Hindi	700-750 Hours	₹52,500	₹43,500

Admission Open

MADE EASY JAIPUR : AB - 559, Kings Road, Nirman NagarPh : 0141-4024612, 09166811228www.madeeasy.in

ADE EASY	India's Best Institute for IES, GATE & PSUs Electrical Engineering Set-A
Ans.	(b)
	$f_2 = 2f_1 \Rightarrow$ double frequency $\Rightarrow n = 2$
	$C_d = \frac{C_1 - n^2 C_2}{n^2 - 1} = \frac{C_1 - 4C_2}{3} = \frac{460 - 4 \times 100}{3} = 20 \text{ pF}$
	End of Solution
45.	Vertical delay line in CRO
	(a) Gives proper time for thermionic emission of electrons.(b) Delays the signal voltage by 200 ns.
	(c) Allows the horizontal sweep to start prior to vertical deflection.(d) Delays the generation of sweep voltage.
Ans.	(b)
	End of Solution
46.	 A 0 - 150 V voltmeter has a guaranteed accuracy of 1% full scale reading. The voltag measured by this instrument is 83 V. The limiting error will be nearly. (a) 1.2% (b) 1.8% (c) 2.4% (d) 3.2%
Ans.	(b)
AII5.	
	%L.E. = $\frac{150}{83}$ = 1.81%
47.	<i>End of Solution</i> The variations in the measured quantity due to sensitivity of transducer to any plan
	other than the required plane is
	(a) Cross sensitivity(b) Sensitivity(c) Interference(d) Distributed sensitivity
Ans.	(a)
	End of Solution
48.	A resistance strain gauge with a gauge factor of 2 is fastened to a steel member subjected to a stress of 1050 kg/cm ² . The modulus of elasticity of steel is 2.1×10^{-10}
	kg/cm ² . The change in resistance ΔR of the strain gauge element due to applied stres
	(a) 0.1% (b) 0.2% (c) 0.3% (d) 0.4%
Ans.	(a)
	$G_f = 2$
	Stress = 1050 kg/cm^2
	$Y = 2.1 \times 10^{6} \text{ kg/cm}^{2}$

	Strain = \in = $\frac{\text{Stress}}{Y} = \frac{1050}{2.1 \times 10^6}$	$-500 \times 10^{-6} - c$
		- 000×10 - 2
	$\Delta R = G_f \in R$	
	$\% \frac{\Delta R}{R} = G_{f} \in \times 100$	
	· · ·	
	$\% \frac{\Delta R}{R} = 2 \times 500 \times 10^{-6} \times$	
49.	In which one of the following classes of compute	<i>End of Solutio</i> rs, is the relationship between architectu
	and organization very close?	
		ini computers uper computers
		uper computers
Ans.	(a) Microcomputer is a personal computer. So, arc	chitecture and organization is very clos <i>End of Solutio</i>
50.	The decimal equivalent of binary number 100	
	(a) 9.750 (b) 9.	
	(c) 10.750 (d) 10).925
Ans.	(b) $1001.101 = 1 \times 2^3 + 1 \times 2^0 +$	1 0-1 1 0-3
	$1001.101 = 1 \times 2^{\circ} + 1 \times 2^{\circ} + = 9.625$	- × 2 ' + × 2 °
		End of Solutio
F 4		
51.	Convert decimal 41.6875 into equivalent bina (a) 100101.1011 (b) 10	
		01001.1101
Ans.	(c)	
	41.6875	
	$41 \Rightarrow 32$ 16 8 4 2	1
	1 0 1 0 0	1
	0.6875 × 2 = 1.3	75
	$0.375 \times 2 = 0.7$	
	0.75 × 2 = 1.5	0
	0.50 × 2 = 🗸 1.0	0
	.1011	
	41.6875 ⇒ 101001.1011	
		End of Solutio

IADE EASY	India's Best Institute for IES, GATE & PSUs Electrical Engineering Set-A
52.	The Central Processing Unit (CPU) consists of (a) ALU and control unit only (b) ALU, control unit and Resisters only (c) ALU, Control unit and System bus only (d) ALU, Control unit, Registers and Internal bus
Ans.	(d) CPU contains ALU, CU and registers and internal buses.
53.	When enough total memory space exists to satisfy a request, but it is not contiguouthen this problem is known as(a) Internal Fragmentation(b) External Fragmentation(c) Overlays(d) Partitioning
Ans.	(b) End of Solution
54.	The total average read of write time T_{total} is (a) $T_s + \frac{1}{2r} + \frac{b}{N}$ (b) $T_s + \frac{1}{2r} + \frac{b}{rN}$ (c) $\frac{T_s}{rN} + \frac{b}{N}$ (d) $T_s + 2r + \frac{b}{rN}$ where,
Ans.	$T_{s} = \text{Average seek time}$ $b = \text{Number of bytes to be transferred}$ $N = \text{Number of bytes on a track}$ $r = \text{Rotation speed, in revolution per second}$ (b) $\text{Seek time} = T_{s}$ "r" revolution $\Rightarrow 1 \text{ sec}$ 1 revolution $\Rightarrow \frac{1}{r} \text{sec}$
	$\therefore \text{Rotational latency} = \frac{1}{2} \text{ revolution time}$ $= \frac{1}{2} * \frac{1}{r} \sec = \frac{1}{2r} \sec$ Transfer time: 1 revolution time \Rightarrow 1 track data (N bytes)
	time required for <i>b</i> bytes = $\frac{\frac{1}{r}\sec *b}{N} = \frac{b}{rN}$

	Total time = Seek time + Average rotational latency + Transfer time = $T_s + \frac{1}{2r} + \frac{b}{rN}$
	$= r_s + \frac{1}{2r} + \frac{1}{rN}$ End of Solution
55.	If a cache has 64-byte cache lines, how long does it take to fetch a cache line if the main memory takes 20 cycles to respond to each memory request and returns 2 bytes of data in response to each request? (a) 980 cycles (b) 640 cycles (c) 320 cycles (d) 160 cycles
Ans.	 (b) CM line size = 64 B Memory access time = 20 cycles/2 byte transfer Total time required to fetch the cache line is, ⇒ (Memory referred number of times) × (Memory access time)
	$\Rightarrow \frac{64}{2} \times 20 \text{ cycles}$ $\Rightarrow 640 \text{ cycles}$
56.	End of Solution Which of the following statements are correct about SRAM?
	 It provides faster access as compared to DRAM. It is cheaper than DRAM.
	 It is more expensive than DRAM. It has higher bit density than DRAM.
	(a) 1 and 4 only (c) 1, 3 and 4 only (d) 2 and 4 only
Ans.	(b) SRAM is faster than DRAM and more expensive.
57.	Features of solid state drives (SSDs) are1. High-performance in input/output operations per second2. More power consumption than comparable size HDDS3. Lower access times and latency rates
	 4. More susceptible to physical shock and vibration (a) 2 and 3 only (b) 2 and 4 only (c) 1 and 3 only (d) 1 and 4 only

Ans. (c) SDDs uses software instructions to go directly to the location where data is stored to access, therefore time required to access the data is low. Where as in the hard disk drive mechanically move its read/write head across a spinning platter to locate data to access. End of Solution 58. The decimal value of signed binary number 11101000 expressed in 1's complement is (a) -223 (b) -184 (c) -104 (d) -23 Ans. (d) 11101000 (-23) 11101000 → 000101111(23) Option (d) is correct. 59. The memory management function of virtual memory includes 1. Space allocation 2. Program relocation 3. Program execution 4. Code sharing (a) 1, 2 and 3 only (b) 1, 2 and 4 only (c) 1, 3 and 4 only (d) 2, 3 and 4 only 40. Which of the following instructions of 8085 are the examples of implied addressing? 1. CMA 2. IN byte 3. RET (a) 1, 2 and 3 (b) 1 and 2 only (c) 2 and 3 only (d) 1 and 3 only Ans. (d) CMA: Implicit/Implied as the instruction does not have any operands and address of operand is in mnemonics itself.		MADE EASY India's Best Institute for IES, GATE & PSUs	ESE 2019 Preliminary Examination Electrical Engineering Set-A
 58. The decimal value of signed binary number 11101000 expressed in 1's complement is (a) -223 (b) -184 (c) -104 (d) -23 Ans. (d) 11101000 (-23) 11101000 → 000101111(23) Option (d) is correct. 59. The memory management function of virtual memory includes Space allocation Program execution Code sharing (a) 1, 2 and 3 only (b) 1, 2 and 4 only (c) 1, 3 and 4 only (d) 2, 3 and 4 only Ans. (b) Program execution is a CPU function. Virtual memory concept is used to increase the address space. 60. Which of the following instructions of 8085 are the examples of implied addressing? CMA IN byte RET (a) 1, 2 and 3 only (b) 1 and 2 only (c) 2 and 3 only (d) 1 and 3 only Ans. (d) CMA: Implicit/Implied as the instruction does not have any operands and address of operand is in memories itself. RET: Indirect/Implied	Ans.	SSD's uses software instructions to go access, therefore time required to ac Where as in the hard disk drive mechan	cess the data is low. ically move its read/write head across a spinning
11101000 (-23) 11101000→00010111(23) Option (d) is correct. 59. The memory management function of virtual memory includes 1. Space allocation 2. Program relocation 3. Program execution 4. Code sharing (a) 1, 2 and 3 only (b) 1, 2 and 4 only (c) 1, 3 and 4 only (d) 2, 3 and 4 only Ans. (b) Program execution is a CPU function. Virtual memory concept is used to increase the address space. End of Solution 60. Which of the following instructions of 8085 are the examples of implied addressing? 1. CMA 2. IN byte 3. RET (a) 1, 2 and 3 (b) 1 and 2 only (c) 2 and 3 only (d) 1 and 3 only Ans. (d) CMA: Implicit/Implied as the instruction does not have any operands and address of operand is in mnemonics itself. RET: Indirect/Implied	58.	(a) –223	(b) -184
 59. The memory management function of virtual memory includes Space allocation Program execution Code sharing 1, 2 and 3 only 1, 2 and 3 only 1, 2 and 4 only 2, 3 and 4 only Ans. (b) Program execution is a CPU function. Virtual memory concept is used to increase the address space. End of Solution 60. Which of the following instructions of 8085 are the examples of implied addressing? CMA IN byte RET 1, 2 and 3 1 and 2 only 1 and 2 only 2 and 3 only 1 and 3 only Ans. (d) CMA: Implicit/Implied as the instruction does not have any operands and address of operand is in mnemonics itself. RET: Indirect/Implied	Ans.	11101000 (-23) 11101000	End of Solution
 Program execution is a CPU function. Virtual memory concept is used to increase the address space. 60. Which of the following instructions of 8085 are the examples of implied addressing? CMA IN byte RET 1, 2 and 3 1 and 2 only 1 and 3 only Ans. (d) CMA: Implicit/Implied as the instruction does not have any operands and address of operand is in mnemonics itself. RET: Indirect/Implied	59.	 Space allocation Program execution (a) 1, 2 and 3 only 	virtual memory includes 2. Program relocation 4. Code sharing (b) 1, 2 and 4 only
 60. Which of the following instructions of 8085 are the examples of implied addressing? CMA IN byte RET 1, 2 and 3 1 and 2 only 2 and 3 only 1 and 3 only Ans. (d) CMA: Implicit/Implied as the instruction does not have any operands and address of operand is in mnemonics itself. RET: Indirect/Implied	Ans.	Program execution is a CPU function.	
Ans. (d) CMA: Implicit/Implied as the instruction does not have any operands and address of operand is in mnemonics itself. RET: Indirect/Implied	60.	1. CMA 2. IN byte 3. RET (a) 1, 2 and 3	8085 are the examples of implied addressing? (b) 1 and 2 only
End of Solution	Ans.	(d) CMA: Implicit/Implied as the instruction operand is in mnemonics itself.	
			End of Solution
	orporate	e Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 🖂	info@madeeasy.in 📀 www.madeeasy.in Page 25

ESE 2019 | Preliminary Examination EBSY ADE India's Best Institute for IES. GATE & PSUs Electrical Engineering | Set-A The important fact about the collector current is: 61. (a) It is greater than emitter current. (b) It equals the base current divided by the current gain. (c) It is small. (d) It approximately equals the emitter current. Ans. (d) $I_E = I_B + I_C$ I_B is in μA , $I_F \approx I_C$ End of Solution 62. What is Shockely's equation of a semiconductor diode in the forward bias regions? (b) $I_D = I_S (e^{V_D / nV_T} - 1)$ (a) $I_D = I_S(e^{V_D^2/nV_T} - 1)$ (c) $I_D = I_S (e^{nV_D / nV_T} - 1)$ (d) $I_D = I_S (e^{V_T / nV_D} - 1)$ Where, I_{S} is reverse saturation current $V_{\rm D}$ is applied forward-bias voltage across the diode V_{τ} is thermal voltage n is an ideality factor Ans. (b) $I_D = I_S \left[e^{V/\eta V_T} - 1 \right]$ End of Solution The thermal voltage V_{τ} of a semiconductor diode at 27°C temperature is nearly 63. (a) 17 mV (b) 20 mV (c) 23 mV (d) 26 mV (d) Ans. $V_T = \frac{T}{11600} = \frac{300}{11600} = 26 \text{ mV}$ End of Solution 64. The disadvantage of a typical MOSFET as compared to BJT is (a) Increased power-handling levels (b) Reduced power-handling levels (c) Increased voltage-handling levels (d) Reduced voltage-handling levels Ans. (b) The disadvantage of a typical MOSFET compared to BJT is reduced power handling levels. End of Solution Corporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 🕢 www.madeeasy.in Page 26

- 🗸 Quality Teaching
- 🗸 Comprehensive Study Material
- 🗸 Well Planned Curriculum
- 🗸 Professionally Managed

Announcing

NEW BATCHES for **ESE 2020** & **GATE 2020**

1 Yr/2Yrs CLASSROOM COURSES

••• Early start •• Extra edge

- Suitable for college going, working professionals and passed out aspirants.
- For Evening (Regular) Batches classes will be held 6-7 days in a week for 3-4 hrs/day.
 * Classes may be extended on weekends & public holidays.
- For **Morning (Regular) Batches** classes will be held 6-7 days in a week for 6 hrs/day.
- For Weekend Batches classes will be conducted on weekends and public holidays.
 * Classes may be conducted on weekdays during semester breaks.

		Delhi	Noida
-	CE	12-Jan-2019	12-Jan-2019
Neekend 3atches	ME	12-Jan-2019	12-Jan-2019
/eek atch	EE	13-Jan-2019	13-Jan-2019
2 0	EC	13-Jan-2019	13-Jan-2019
	CS	19-Jan-2019	
	CE	15-Jan-2019, 1	4-Feb-2019
lar es	ME	15-Jan-2019, 1	4-Feb-2019
egula atche:	EE	17-Jan-2019, 1	8-Feb-2019
ar g	EC	17-Jan-2019	
	CS	16-May-2019	

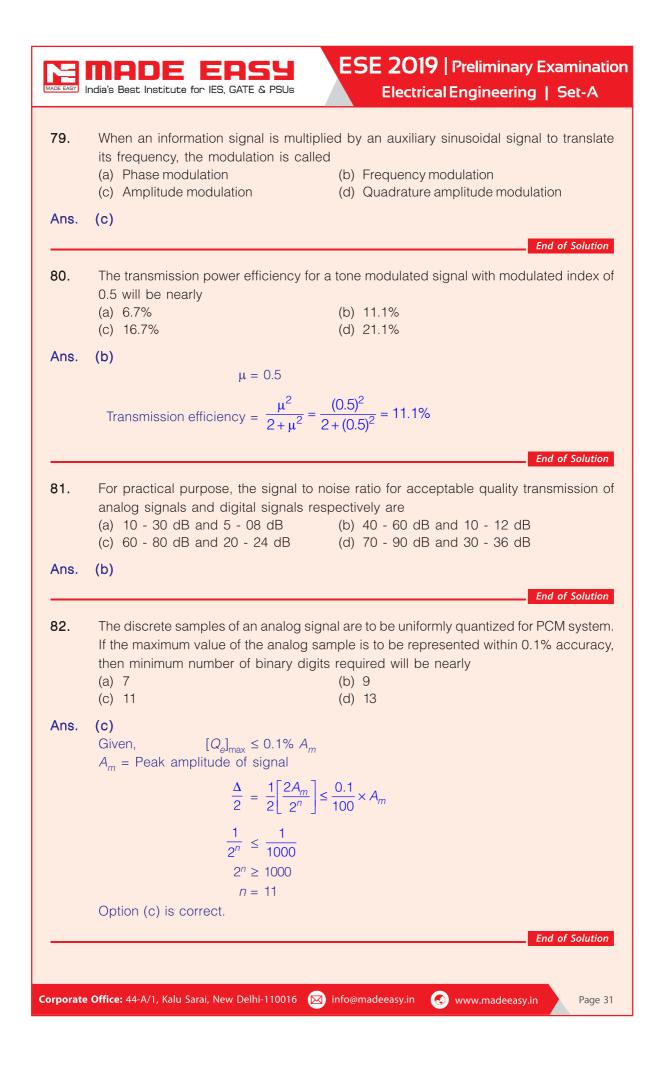
Batches Commencement Dates

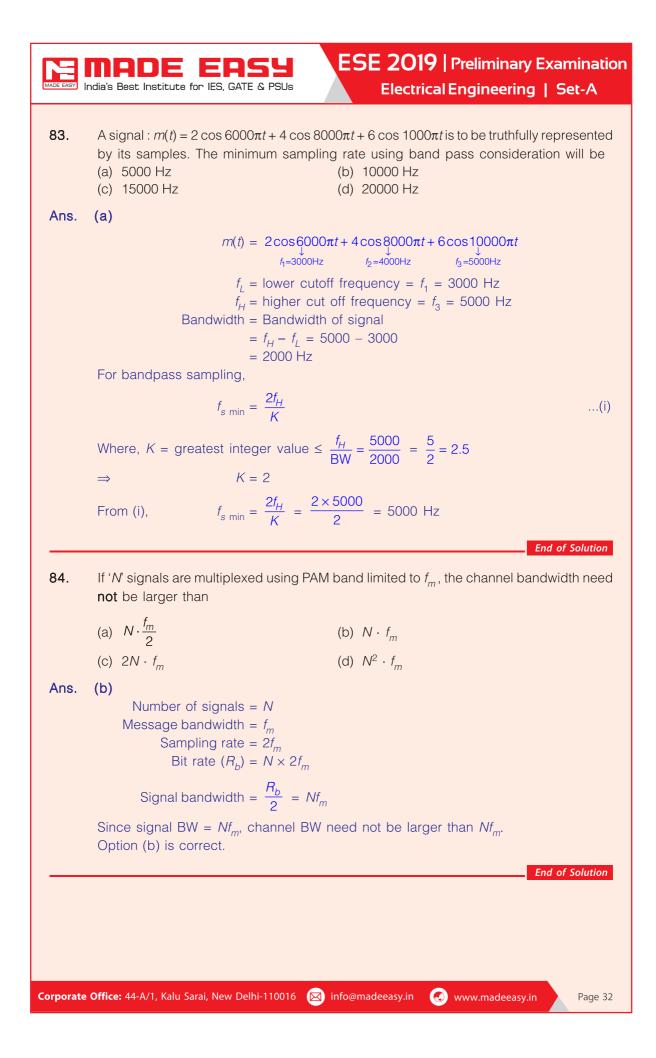
Rest of India	(Regular Batches
Patna	25 th Feb'19
Lucknow	20 th Feb'19
Bhopal	14 th Jan'19
Indore	20 th Feb'19
Pune	14 th Jan'19
Hyderabad	17 th Feb'19
Bhubaneswar	24 th Jan'19
Kolkata	15 th Jan'19
Jaipur	17 th Feb'19

Admission open

Corporate office : 44-A/1, Kalu Sarai, New Delhi - 1100 16 🕓 011-45124612, 9958995830

 Delhi
 Hyderabad
 Noida
 Jaipur
 Bhopal
 Lucknow
 Indore
 Bhubaneswar
 Pune
 Kolkata
 Patna


 011-45124612
 040-66774612
 0120-6524612
 0141-4024612
 0755-4004612
 09919111168
 0731-4029612
 09040299888
 020-26058612
 8981888880
 0612-23566


	Image: End Subscription Est 2019 Preliminary Examinati India's Best Institute for IES, GATE & PSUs Electrical Engineering Set-A
65.	 Which of the following conditions will be satisfied for an impedance matched system? (a) The decibel power gain is equal to twice the decibel voltage gain. (b) The decibel power gain is equal to the decibel voltage gain. (c) The decibel power gain is half the decibel voltage gain. (d) The decibel power gain is equal to the thrice the decibel voltage gain.
Ans.	(b)
	Voltage gain, $A_v = \frac{V_o}{V_i}$
	Power gain = $\frac{P_o}{P_i} = \frac{V_o^2 / R_o}{V_i^2 / R_i} = A_V^2 \times \frac{R_i}{R_o}$
	Power gain = $10\log\left(A_V^2 \frac{R_i}{R_o}\right) = 2 \times 10\log A_v + 10\log\left(\frac{R_i}{R_o}\right)$
	wheren, $R_i = R_o$
	$ \text{Power gain} _{dB} = 2 \times 10 \log A_v + 10 \log 1 = 20 \log A_v = \text{Voltage gain} _{dB}$
66.	End of Solution For most FET configurations and for common-gate configurations, the input impedance are respectively (a) High and high (b) High and low (c) Low and low (d) Low and high
Ans.	(b) For CS and CD the input impedance Z_i is high, for CG the input impedance Z_i is low
67.	The dB gain of cascaded system is simply (a) The square of the dB gain of each stage (b) The sum of the dB gains of each stage (c) The multiplication of the dB gains of each stage (d) The division of the dB gains of each stage
Ans.	(b)
	$A_{V} = A_{V1} \cdot A_{V2} \dots A_{Vn}$
	$20 \log A_V = 20 \log A_{V1} \cdot A_{V2} \dots A_{Vn}$
	$= 20 \log A_{V1} + 20 \log A_{V2} + \dots 20 \log A_{Vn}$
	End of Solution
orporate	• Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 📀 www.madeeasy.in 🛛 Page 2

VIADE EASY	Image: End Subscription Est 2019 Preliminary Examination India's Best Institute for IES, GATE & PSUs Electrical Engineering Set-A
68.	The Miller effect input capacitance C_{M_i} is (a) $(1 - A_V^2)C_f$ (b) $(1 - A_V)C_f$ (c) $(1 - C_f)A_V$ (d) $(1 - C_f^2)A_V$ Where, C_f = feedback capacitance $A_V = \frac{V_0}{V_i}$
Ans.	(b) Miller's input capacitance, $C_{Mi} = (1 - A_V)C_M$ End of Solution
69.	For an op-amp having a slew rate of 2 V/μs, if the input signal varies by 0.5 V in 10 μs, the maximum closed-loop voltage gain will be (a) 50 (b) 40 (c) 22 (d) 20
Ans.	(b)
	S.R. = $A_{CL} \cdot \frac{\Delta V_i}{\Delta t} = A_{CL} \cdot \frac{0.5}{10 \times 10^{-6}}$
	$A_{CL} = 40$
	End of Solution
70.	A negative feedback amplifier where an input current controls an output voltage is called(a) Current amplifier(b) Transconductance amplifier(c) Transresistance amplifier(d) Voltage amplifier
Ans.	(c)
	CCVS, $A = \frac{V_0}{I_i}$ (Transfer f_n)
	= Transresistance amplifier
	End of Solution
71.	In emergency lighting system, the component used for maintaining the charge on the battery is
	(a) LED (b) Shockley diode
Ans.	(c) Thermistor (d) SCR (a)
	LED is used in emergency lighting system.
	End of Solution
	Officer 44 A/1 Kalu Savai Nave Dalki 110016
orporate	• Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 📀 www.madeeasy.in Page 28

72.	For BC phase shift oscillator using F	- ET, the gain of the amplifier stage must be practical
	somewhat greater than	
	(a) 27 (c) 29	(b) 28 (d) 30
Ans.	(c) For RC phase shift oscillator, $ A_V = 29$	
73.	The time delay in a look-ahead ca (a) Number of operands only (b) Propagation delay only (c) Number of bits in the operand (d) Bits in the operand, number o	
Ans.	(c) Time delay in a look ahead carry ad only.	dder is independent of number of bits in the operan
74.	The time delay Δt introduced by	a SISO shift register in digital signals is given by
	(a) $N^2 \times \frac{1}{f_c}$ (c) $\frac{f_c}{N}$	(b) $N^2 \times f_c$
	(c) $\frac{f_c}{N}$	(b) $N^2 \times f_c$ (d) $N \times \frac{1}{f_c}$
	Where, N is the number of stages f_c is the clock frequency	
Ans.	(d)	
	Given: Number of flip-flops in SISO = N Clock frequency = f_c	
	Clock time period = $\frac{1}{f_c}$	
	Time delay for a bit to pass throu	ugh a single flip-flop stage = $\frac{1}{f_c}$
	Therefore time delay for a signal	to pass through N flip-flop stages = $N \times \frac{1}{f_c}$
		End of Solution

IADE EASY	ndia's Best Institute for IES, GATE & PSUs Electrical Engineering Set-A
75.	A analog output voltage for the input 1001 to a 4 bit D/A converter for all possible input assuming the proportionality factor $K = 1$ will be (a) 9 (b) 6 (c) 3 (d) 1
Ans.	(a) $V_0 = K \text{ [Decimal equivalent of binary data]} = 1[1001]_2 = [9]_{10}$ End of Solution
76.	In microprocessor interface, the concept of detecting some error condition such as 'ne match found' is called (a) Syntax error (b) Semantic error (c) Logical error (d) Error trapping
Ans.	(d) End of Solution
77.	The maximum number of input or output devices that can be connected to 808 microprocessor are (a) 8 (b) 16 (c) 40 (d) 256
Q.77	
Ans.	(d) In the instruction IN 8-bit port address and OUT 8-bit port address. I/O has 8-bit value so therefore $2^8 \rightarrow 256$ devices can be connected.
78.	End of Solution The contents of the accumulator and register <i>C</i> are 2EH and 6CH respectively. The instruction ADD C is used. The values of AC and P flags are (a) 0 and 0 (b) 1 and 1 (c) 0 and 1 (d) 1 and 0
Q.78	
Ans.	(b) Content of accumulator = $2E$ Content of register $C = 6C$ After addition operation result is $9A$ Binary equivalent of $9A$ is $(10011010)_2$ $\boxed{s \ z \ x \ AC \ x \ P \ x \ CY}$ Flag register format
	1 0 0 1 0 1 0 0
	$\therefore \qquad AC = 1$ $P = 1$ End of Solution

	ndia's Best Institute for IES, GATE & PSUs Electrical Engineering Set-A
85.	A linear discrete-time system is characterized by its response $h_k(n) = (n - k) u(n - k)$ to a delayed unit sample $\delta(n - k)$. The system will be (a) Shift invariant (b) Shift variant (c) Scale invariant (d) Scale variant
Ans.	(a) Given that, $x(n) = \delta(n-K) \xrightarrow{\text{sys.}} y(n) = h_k(n)$ $h_k(n) = (n-K) u(n-K)$ By putting, $n = n + K$
	$x(n + K) = \delta(n) \xrightarrow{\text{sys.}} y(n + K) = n u(n)$ Here, input is time-advanced by 'K' time units. Then output will be also time advanced by K times unit. Hence the system is shift invariant.
86.	Consider the analog signal $x_a(t) = 3 \cos 100\pi t$ The minimum sampling rate F_s required to avoid aliasing will be (a) 100 Hz (b) 200 Hz (c) 300 Hz (d) 400 Hz
Ans.	(a) $x_{a}(t) = 3 \cos 100\pi t$ $f_{0} = 50 \text{ Hz}$ $f_{s \text{ min}} = 2f_{0} = 2 \times 50 = 100 \text{ Hz} \text{ (to avoid aliasing)}$ End of Solution
87.	The response of the system $y(n) = x(n)$ to the following input signal $x(n) = \begin{cases} n , & -3 \le n \le 3\\ 0, & \text{otherwise} \end{cases}$ (a) Is delayed from input (b) Is exactly same as the input
Ans.	(c) Leads the input (d) Varies with signal (b) Since, $y(n) = x(n)$ Therefore, response or system output will be exactly same as the input.
88.	The complex exponential Fourier representation for the signal $x(t) = \cos \omega_0 t$ is (a) $\sum_{k=-\infty}^{\infty} c_k e^{-jk\omega_0 t}$ (b) $\sum_{k=-\infty}^{\infty} c_k e^{-j\omega_0 t}$ (c) $\sum_{k=-\infty}^{\infty} c_k e^{2jk\omega_0 t}$ (d) $\sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$
	(c) $\sum_{k=-\infty}^{\infty} c_k e^{2jk\omega_0 t}$ (d) $\sum_{k=-\infty}^{\infty} c_k e^{jk\omega_0 t}$ (d)

MADE ERSY National **Scholarship** Test

For ESE 2020 & GATE 2020

CategoryScholarship % in Tuition feeA100%B75%C50%D25%E10%

Scholarship

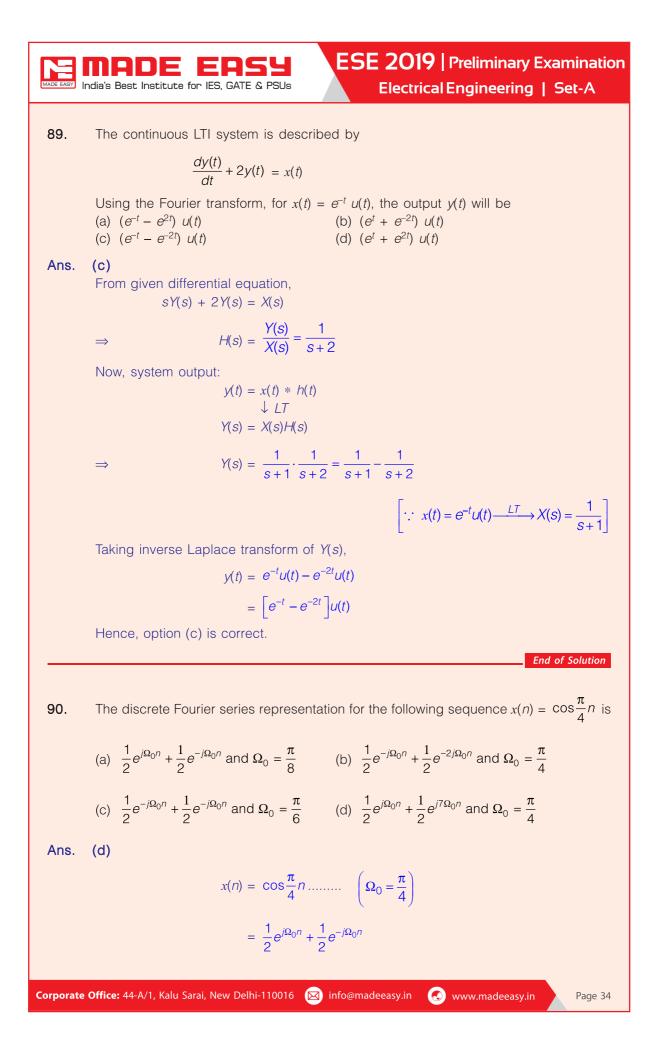
Scholarship applicable on batches commencing between April 2019 to July 2019.

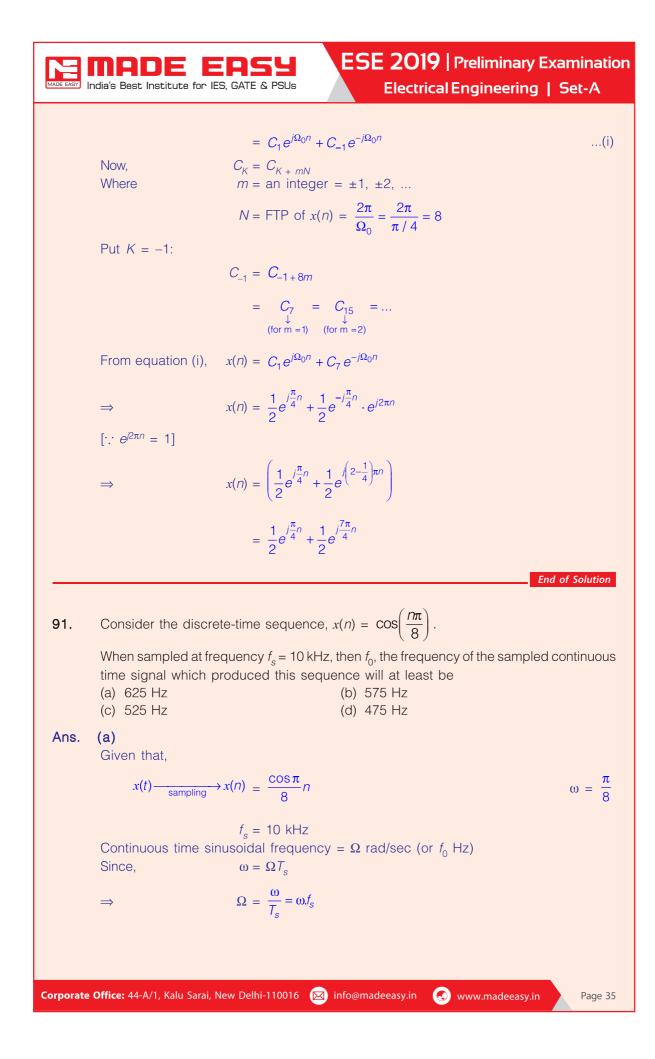
worth

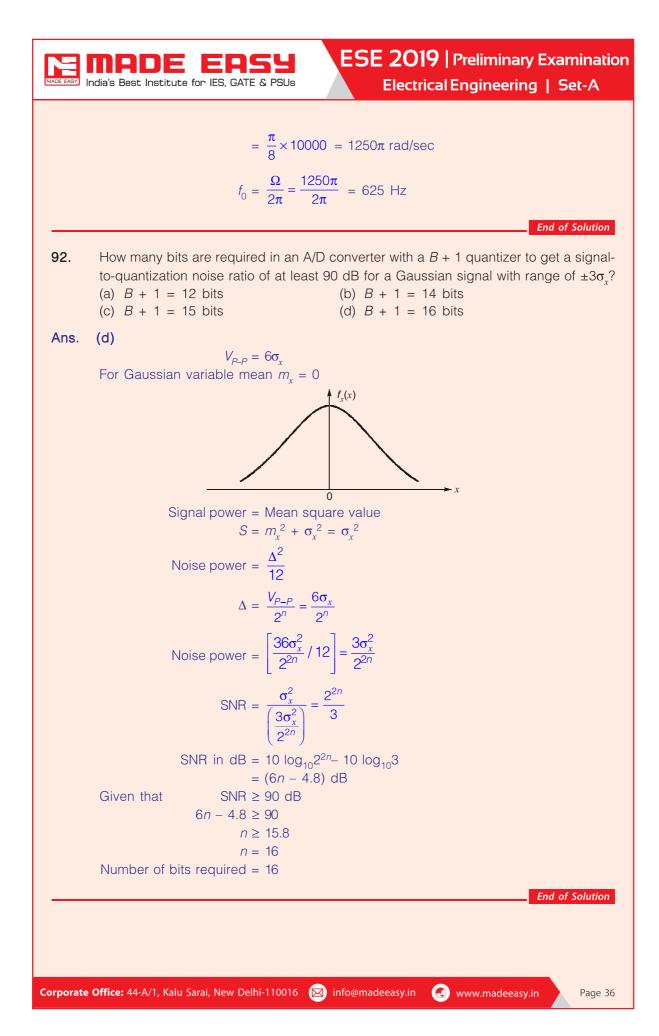
If you are one amongst such talented aspirants who dream about Engineering Services, PSUs and IITs but economic condition is a hurdle in the way of your dreams. MADE EASY is taking an initiative to turn this stumbling block to building block by giving scholarship for coaching guidance and thereby assisting all such students in accomplishing their

alent and aspiration is always an invincible combination. But if these

two are facing disability to prosper due to unfavourable economic


conditions then achieving academic goals is like chasing rainbows.


dreams. MADE EASY is announcing scholarship worth Rs. 5 Crores for all students who wish to enroll in classroom programmes for ESE -2020 and GATE-2020.


Test Pattern & Syllabus

National Scholarship Test is objective type offline test. Students can opt either TECHNICAL BASED PAPER or APTITUDE BASED PAPER to appear for NST.

SOM : 80 RCC : 80 Soil Mechanics : 80 Environmental : 80 FM : 80	Q HMT Q FM	1	Control Systems	-	Networks	- 1	TOC	: 80
Highway : 50 Survey : 50 Option 2	Q Industrial Q SOM Q TOM	: 10Q : 6Q : 8Q : 8Q	Power Systems Measurements Analog Electronics	: 8Q : 8Q : 6Q : 6Q : 6Q	Control Systems EDC Analog Electronics Digital Electronics Communications Signal & Systems	: 6Q : 8Q : 6Q : 8Q	DBMS Computer Networks Digital Electronics	: 8 : 8
	ng Mathematics : 20 Date of Test :			Aptitude	e : 20 Q	Ger	neral English : 10 Q	

	ESE 2019 Preliminary Examination India's Best Institute for IES, GATE & PSUs Electrical Engineering Set-A
93.	Let $x(n)$ be a left-sided sequence that is equal to zero for $n > 0$. If $X(z) = \frac{3z^{-1} + 2z^{-2}}{3 - z^{-1} + z^{-2}}$, then $x(0)$ will be (a) 0 (b) 2 (c) 3 (d) 4
Ans.	(b) $X(z) = \frac{3z^{-1} + 2z^{-2}}{3 - z^{-1} + z^{-2}} \times \frac{z^2}{z^2}$ Where, x(n) = 0, n > 0 i.e $x(n)$ is left sided sequence. $= \frac{3z + 2}{3z^2 - z + 1} = \frac{2 + 3z}{1 - z + 3z^2}$
	$1 - z + 3z^{2}) 2 + 3z (2 + 5z + \frac{2 - 2z + 6z^{2}}{5z - 6z^{2}} X(z) = 2 + 5z + = x(0) + x(-1)z +$
	Hence, $x(0) = 2$ End of Solution
94.	The noise variance σ_{ϵ}^2 at the output of $H(z) = \frac{0.5z}{z - 0.6}$ with respect to input will be nearly (a) 40% (b) 50% (c) 60% (d) 70%
Ans.	(a) By considering the noise having zero mean, variance = power 0.5z
	Given, $H(z) = \frac{0.5z}{z - 0.6}$ $h(n) = 0.5 (0.6)^n u(n)$ If input $x(n) = \delta(n)$ then output, $y(n) = h(n) = 0.5 (0.6)^n u(n)$
	Input energy, $\sum_{n=-\infty}^{\infty} x^2(n) = \sum_{n=-\infty}^{\infty} \delta^2(n) = 1$
	Output energy, $\sum_{n=-\infty}^{\infty} y^2(n) = \sum_{n=-\infty}^{\infty} h^2(n)$
	$= \sum_{n=0}^{\infty} 0.25 \times (0.36)^n = \frac{0.25}{1 - 0.36} = \frac{0.25}{0.64} = 0.4$
	Output energy = 40% of input energy Output power = 40% of input power
	End of Solution
Corporate	e Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 info@madeeasy.in 📀 www.madeeasy.in Page 37

95.	If the complex multi	ply operation takes 1 μ s, the time taken to compute 1024-point DF
	directly will be nea (a) 3.45 s	rly (b) 2.30 s
	(c) 1.05 s	(d) 0.60 s
Ans.	(c)	
	Time for one r	N = 1024 multiplication = 1 µsec
		time for DFT = $N^2 \times 1 \mu \text{sec}$
		= $1024^2 \times 10^{-6}$ sec = 1.05 sec
		End of Solution
96.	Consider the follow	ing data to design a low-pass filter
	Cut-off frequency,	$\omega_c = \frac{\pi}{2}$
	Stop band ripple, Transition bandwidth are	$δ_s = 0.002$ n no larger than 0.1 π. Kaiser window parameters β and N respective
	(a) 2.99 and 45 (c) 2.99 and 65	(b) 4.99 and 45 (d) 4.99 and 65
Ans.	(d)	
		$\alpha_s = \text{stop band deviation}$ = -20 log (δ_s)
	Since $\alpha > 50$	$= -20 \log 0.002 = 53.979$
	Since, $\alpha_s > 50$, So	$\beta = 0.1102 (\alpha_s - 8.7) = 4.99$
	and	$N = \frac{\alpha_s - 7.95}{14.36 \cdot \Delta f}; \text{where, } \Delta \omega = 0.1\pi$
	So,	N = 65
		End of Solution
97.	A transfer function	$G(s) = \frac{1-sT}{1+sT}$ has a phase angle of (-2 tan ⁻¹ ω T) which varies from
	0° to -180° as ω is (a) All pass syster (c) High pass syst	
Ans.	(a)	
		$G(s) = \frac{1 - sT}{1 + sT} \qquad M$
		$M = \left \frac{1 - j\omega T}{1 + j\omega T} \right = 1 \qquad \qquad \longrightarrow \omega$

	MADE EASY India's Best Institute for IES, GATE & PSUs	ESE 2019 Preliminary Examination Electrical Engineering Set-A
99.	The system sensitivity of open loop	o and closed loop system are respectively
	(a) 1 and $\frac{1}{1+GH}$	(b) $\frac{1}{1+GH}$ and 1
	(c) $\frac{1}{GH}$ and 1	(d) 1 and $\frac{1}{GH}$
Ans.	(a) $OLTF = G = T_1$	
	$CLTF = \frac{G}{1+GH} =$	= <i>T</i> ₂
	$S_G^{T_1} = \frac{G}{T_1} \cdot \frac{\delta T_1}{\delta G}$	= 1
	$S_G^{T_2} = \frac{G}{T_2} \cdot \frac{\delta T_2}{\delta G}$	$=\frac{1}{1+OU}$
	- 1 ₂ 0G	Г+GП End of Solution
100.	The steady state error of a type-1	system to a unit step input is
	(a) $\frac{1}{(1+K_p)}$	(b) 0
	(C) ∞	(d) $\frac{1}{K_v}$
Ans.	(b)	
	Type-1: $GH(s) = \frac{1}{s}$	
	$R(s) = \frac{1}{s}$	
	$\Rightarrow \qquad e_{ss} = \lim_{s \to 0} \frac{s \times \frac{1}{s}}{1 + \frac{1}{s}}$	$\frac{1}{2} = 0$
	$s = s = s = 0$ $1 + \frac{1}{s}$	
101		End of Solution
101.	plot for the system to be stable is (a) Clockwise of the origin	ts of the origin of Real-Imaginary plane in a Nyquis (b) Counter-Clockwise of the origin
٨	(c) Left hand side s-plane	(d) Right hand side s-plane
Ans.	(b) According to Nyquist criterion if <i>N</i> Hence, option is (b).	= P, ACW then system is stable.
		End of Solution
orporate	e Office: 44-A/1, Kalu Sarai, New Delhi-110016	🖂 info@madeeasy.in 🕢 www.madeeasy.in 🛛 Page 40

Admission open from

1st Nov, 2018

Batches starting from

19th May, 2019

Hostel/PG facility

will be arranged.

LAUNCHING

Especially designed for 2nd/3rd /4th year college going students

CE | ME/PI | EE | EC/IN | CS

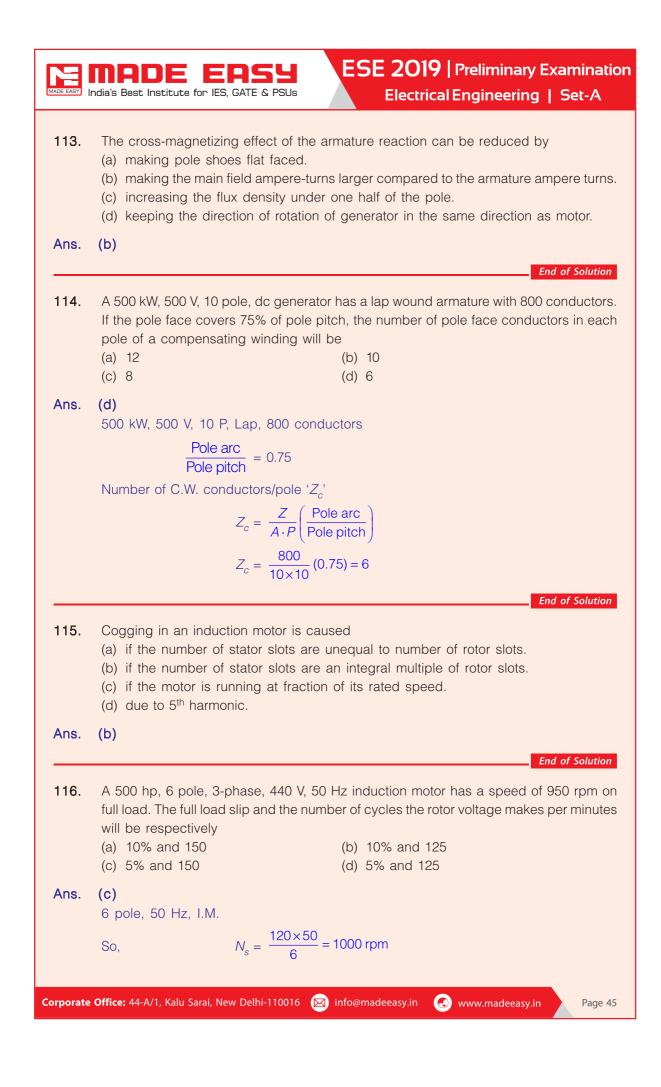
"GATE Classroom Course During College Summer Holidays"

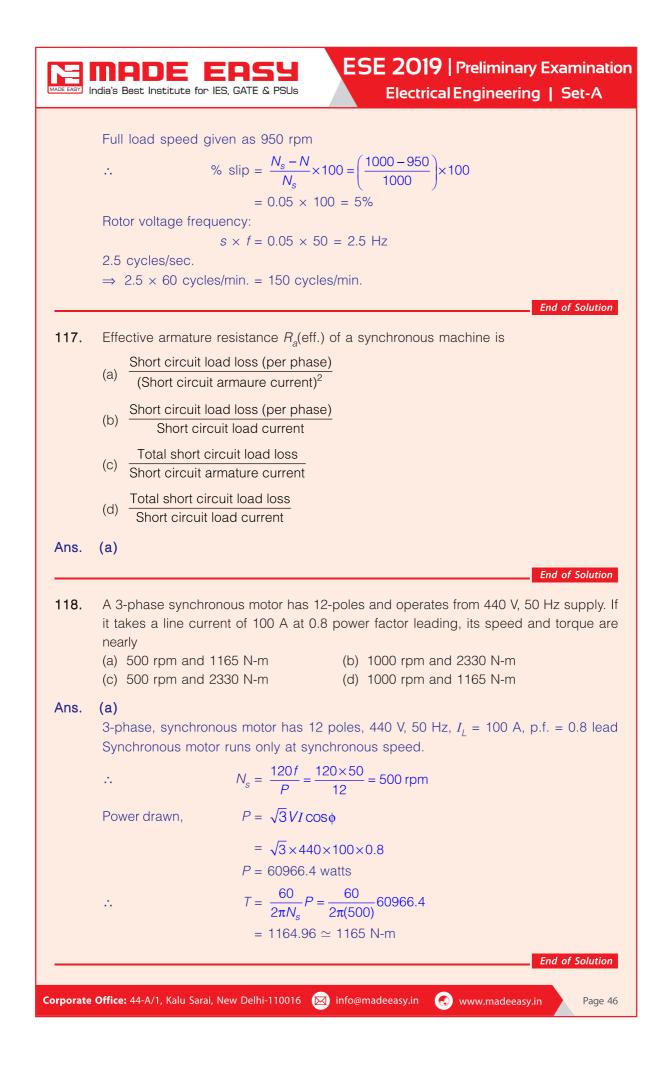
Salient Features

- 70 days intensive course, 8 to 10 hrs classes per day.
- Total 600-650 teaching hours.
- Lectures will be delivered by experienced faculties.
- This course is also helpful in academic gains i.e. good results in university examinations, placements etc., hence highly beneficial for college going students.
- GATE exam relevant study material will be provided.
- Subjects will be culminated with class tests and doubt clearing sessions.

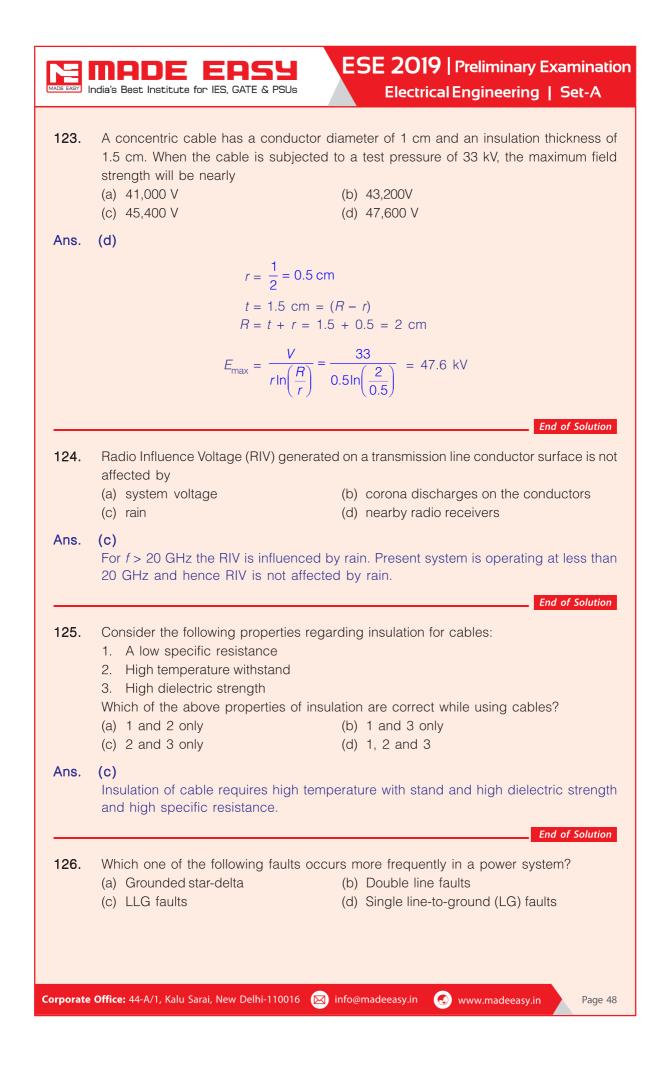
Batches
commencing fromCEME/PIEEEC/INCS19-May-201919-May-201919-May-201919-May-201919-May-2019

For fee structure, batch schedule, online admission and other details, visit : **WWW.Madecasy.in MADE EASY Corporate Office :** 44-A/1, Kalu Sarai (Near Hauz Khas Metro Station) New Delhi-16 • **Ph** : 011-45124612, 9958995830

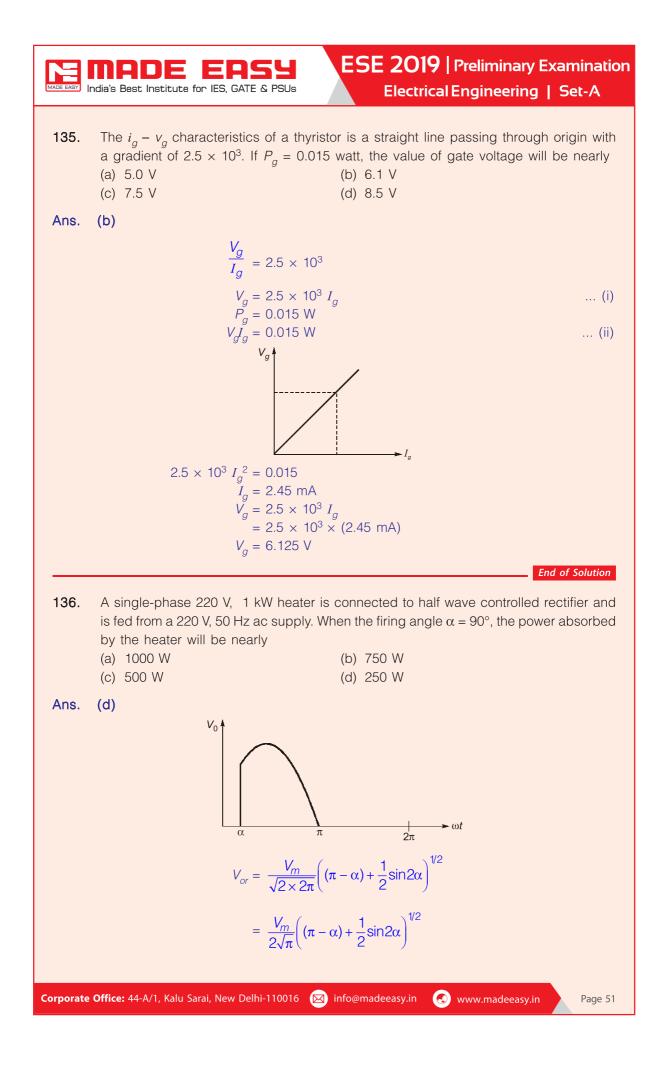

MADE EASY	ESE 2019 Preliminary Examination India's Best Institute for IES, GATE & PSUs Electrical Engineering Set-A				
102.	A unity negative feedback control system has an open-loop transfer function as $G(s) = \frac{K(s+1)(s+2)}{(s+0,1)(s-1)}$				
	The range of values of K for which the closed loop system is stable will be (a) $0 < K < 0.3$ (b) $K > 0.3$ (c) $K > 3$ (d) $K < 0.3$				
Ans.	(b)				
	$q(s) = 1 + \frac{K(s+1)(s+2)}{(s+0.1)(s-1)} = 0$				
	$q(s) = s^2(1+K) + s(3K - 0.9) + (2K - 0.1) = 0$				
	For stability, K > -1 $K > 0.3$ ($\therefore K > 0.3$) K > 0.05				
	End of Solution				
103.	The lag system of a 'lag-lead compensator' has one pole and one zero. Then pole and zero are(a) Real and pole is to the left of zero.(b) Real and pole is to the right of zero.(c) Imaginary and pole is above zero.(d) Imaginary and pole is below zero.				
Ans.	(b) In lag compensator,				
	$G_C = \frac{S+Z}{S+P}; \frac{Z}{P} > 1$				
	pole is to the right of zero.				
104.	A system with characteristic equation: $F(s) = s^{4} + 6s^{3} + 23s^{2} + 40s + 50$				
	will have closed-loop poles such that,(a) all poles lie in the left half of the s-plane and no pole lies on imaginary axis.(b) two poles lie symmetrically on the imaginary axis of the s-plane.(c) all four poles lie on the imaginary axis of the s-plane.(d) all four poles lie in the right half of the s-plane.				
Corpo <u>rate</u>	Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 💽 www.madeeasy.in Page 41				

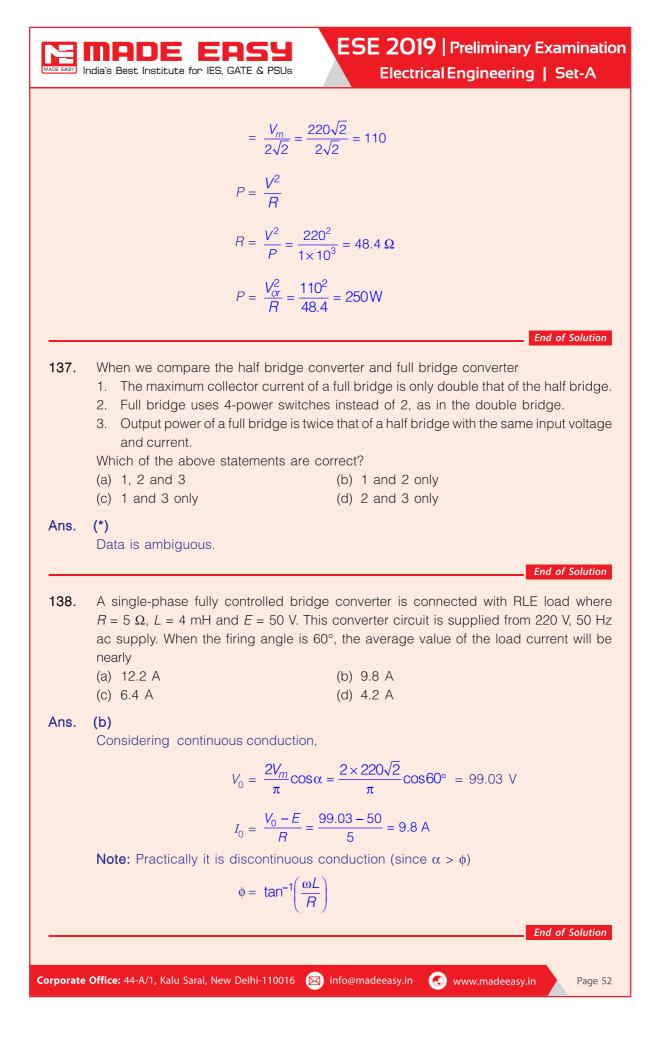

Г

105. A unity feedback (negative) system has open-loop transfer function $G(s) = \frac{K}{s(s+2)}$ The closed-loop system has a steady-state unit ramp error of 0.1. The value of gain should be (a) 20 (b) 30 (c) 40 (d) 50 Ans. (a) $G(s) = \frac{K}{s(s+2)}$ type = 1 $R(s) = \frac{1}{s^2}$ $\Rightarrow \qquad e_{ss} = \frac{1}{K_v} = \frac{2}{K} = 0.1$ $\therefore \qquad K = 20$ End of Solution 106. Transfer function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$ (c) $B(zI - A)^{-1} D + C$ (d) $D(zI - A)^{-1} B + C$ Ans. (a) Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z $\therefore \qquad Transfer function = C[(zI - A)^{-1} B] + D$		Image: Sest Institute for IES, GATE & PSUs ESE 2019 Preliminary Examination Electrical Engineering Set-A
$F(s) = s^{4} + 6s^{3} + 23s^{2} + 40s + 50 = 0$ $s^{4} = \begin{bmatrix} 1 & 23 & 50 \\ 6 & 40 \\ s^{2} & 21.6 \\ s^{0} & 50 \end{bmatrix}$ No sign changes among elements of 1st column and no row becoming zero. Hence all roots lie in left side. $End of Solut$ 105. A unity feedback (negative) system has open-loop transfer function $G(s) = \frac{K}{g(s+2)}$. The closed-loop system has a steady-state unit ramp error of 0.1. The value of gais should be (a) 20 (b) 30 (c) 40 (d) 50 Ans. (a) $G(s) = \frac{K}{g(s+2)}$ $type = 1$ $R(s) = \frac{1}{s^{2}}$ $\Rightarrow \qquad e_{ss} = \frac{1}{K_{v}} = \frac{2}{K} = 0.1$ $\therefore \qquad K = 20$ $End of Solut$ 106. Transfer function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} B + C$ Ans. (a) $Transfer function = C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z $\therefore \qquad Transfer function = C[(zI - A)^{-1} B] + D$	Ans.	(a)
$s^{3} = \begin{cases} 6 & 40 \\ 16.33 & 50 \\ 21.6 \\ 50 \end{cases}$ No sign changes among elements of 1st column and no row becoming zero. Hence all roots lie in left side. Ind of Solution 105. A unity feedback (negative) system has open-loop transfer function $G(s) = \frac{K}{s(s+2)}$ The closed-loop system has a steady-state unit ramp error of 0.1. The value of gais should be (a) 20 (b) 30 (c) 40 (d) 50 Ans. (a) $G(s) = \frac{K}{g(s+2)}$ type = 1 $R(s) = \frac{1}{s^{2}}$ $\Rightarrow \qquad e_{ss} = \frac{1}{K_{v}} = \frac{2}{K} = 0.1$ $\therefore \qquad K = 20$ Interster function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} B + C$ Ans. (a) Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z \therefore Transfer function = $C[(zI - A)^{-1} B] + D$		
$s^{2} = 16.33 = 50$ $s^{0} = 21.6$ $s^{0} = 50$ No sign changes among elements of 1st column and no row becoming zero. Hence all roots lie in left side. End of Solution 105. A unity feedback (negative) system has open-loop transfer function $G(s) = \frac{K}{s(s+2)}$ The closed-loop system has a steady-state unit ramp error of 0.1. The value of gais should be (a) 20 (b) 30 (c) 40 (d) 50 Ans. (a) $G(s) = \frac{K}{s(s+2)}$ $type = 1$ $R(s) = \frac{1}{s^{2}}$ $\Rightarrow \qquad e_{ss} = \frac{1}{K_{v}} = \frac{2}{K} = 0.1$ $\therefore \qquad K = 20$ End of Solution 106. Transfer function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$ (c) $B(zI - A)^{-1} D + C$ (d) $D(zI - A)^{-1} B + C$ Ans. (a) Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z $\therefore \qquad Transfer function = C[(zI - A)^{-1} B] + D$		<i>s</i> ⁴ 1 23 50
$s^{1} \begin{bmatrix} 21.6 \\ s^{0} \end{bmatrix} = 50$ No sign changes among elements of 1st column and no row becoming zero. Hence all roots lie in left side. Ind of Solution 105. A unity feedback (negative) system has open-loop transfer function $G(s) = \frac{K}{s(s+2)}$ The closed-loop system has a steady-state unit ramp error of 0.1. The value of gais should be (a) 20 (b) 30 (c) 40 (d) 50 Ans. (a) $G(s) = \frac{K}{s(s+2)}$ $type = 1$ $R(s) = \frac{1}{s^{2}}$ $\Rightarrow \qquad e_{ss} = \frac{1}{K_{v}} = \frac{2}{K} = 0.1$ $\therefore \qquad K = 20$ End of Solution 106. Transfer function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} B + C$ Ans. (a) Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z' $\therefore \qquad Transfer function = C[(zI - A)^{-1} B] + D$		
$s^{0} = 50$ No sign changes among elements of 1st column and no row becoming zero. Hence all roots lie in left side. Ind of Solut 105. A unity feedback (negative) system has open-loop transfer function $G(s) = \frac{K}{s(s+2)}$ The closed-loop system has a steady-state unit ramp error of 0.1. The value of gais should be (a) 20 (b) 30 (c) 40 (c) 50 Ans. (a) $G(s) = \frac{K}{s(s+2)}$ type = 1 $R(s) = \frac{1}{s^{2}}$ $\Rightarrow \qquad e_{ss} = \frac{1}{K_{v}} = \frac{2}{K} = 0.1$ $\therefore \qquad K = 20$ Independent of the function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$ (c) $B(zI - A)^{-1} D + C$ (d) $D(zI - A)^{-1} B + C$ Ans. (a) Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z' $\therefore \qquad Transfer function = C[(zI - A)^{-1} B] + D$		
Hence all roots lie in left side. 105. A unity feedback (negative) system has open-loop transfer function $G(s) = \frac{K}{s(s+2)}$. The closed-loop system has a steady-state unit ramp error of 0.1. The value of gain should be (a) 20 (b) 30 (c) 40 (d) 50 Ans. (a) $G(s) = \frac{K}{s(s+2)}$. type = 1 $R(s) = \frac{1}{s^2}$ $\Rightarrow \qquad e_{ss} = \frac{1}{K_v} = \frac{2}{K} = 0.1$ $\therefore \qquad K = 20$ End of Solution 106. Transfer function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$ (c) $B(zI - A)^{-1} D + C$ (d) $D(zI - A)^{-1} B + C$ Ans. (a) Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z' \therefore Transfer function = $C[(zI - A)^{-1} B] + D$		
The closed-loop system has a steady-state unit ramp error of 0.1. The value of gai should be (a) 20 (b) 30 (c) 40 (c) 50 Ans. (a) $G(s) = \frac{K}{s(s+2)}$ type = 1 $R(s) = \frac{1}{s^2}$ $\Rightarrow \qquad e_{ss} = \frac{1}{K_v} = \frac{2}{K} = 0.1$ $\therefore \qquad K = 20$ End of Solut 106. Transfer function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$ (c) $B(zI - A)^{-1} D + C$ (d) $D(zI - A)^{-1} B + C$ Ans. (a) Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z' \therefore Transfer function = $C[(zI - A)^{-1} B] + D$		
should be (a) 20 (c) 40 (d) 50 Ans. (a) $G(s) = \frac{K}{s(s+2)}$ type = 1 $R(s) = \frac{1}{s^2}$ $\Rightarrow \qquad e_{ss} = \frac{1}{K_v} = \frac{2}{K} = 0.1$ $\therefore \qquad K = 20$ End of Solut 106. Transfer function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$ (c) $B(zI - A)^{-1} D + C$ (d) $D(zI - A)^{-1} B + C$ Ans. (a) Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z' $\therefore \qquad Transfer function = C[(zI - A)^{-1} B] + D$	105.	A unity feedback (negative) system has open-loop transfer function $G(s) = \frac{K}{s(s+2)}$.
(a) 20 (b) 30 (c) 40 (c) 40 (d) 50 Ans. (a) $G(s) = \frac{K}{s(s+2)}$ type = 1 $R(s) = \frac{1}{s^2}$ $\Rightarrow \qquad e_{ss} = \frac{1}{K_v} = \frac{2}{K} = 0.1$ $\therefore \qquad K = 20$ End of Solution 106. Transfer function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$ (c) $B(zI - A)^{-1} D + C$ (d) $D(zI - A)^{-1} B + C$ Ans. (a) Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z' $\therefore \qquad Transfer function = C[(zI - A)^{-1} B] + D$		The closed-loop system has a steady-state unit ramp error of 0.1. The value of gain k
Ans. (a) $G(s) = \frac{K}{s(s+2)}$ type = 1 $R(s) = \frac{1}{s^2}$ $\Rightarrow \qquad \theta_{ss} = \frac{1}{K_v} = \frac{2}{K} = 0.1$ $\therefore \qquad K = 20$ End of Solution 106. Transfer function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$ (c) $B(zI - A)^{-1} D + C$ (d) $D(zI - A)^{-1} B + C$ Ans. (a) Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z' $\therefore \qquad Transfer function = C[(zI - A)^{-1} B] + D$		
$G(s) = \frac{K}{g(s+2)}$ type = 1 $R(s) = \frac{1}{s^2}$ $\Rightarrow \qquad e_{ss} = \frac{1}{K_v} = \frac{2}{K} = 0.1$ $\therefore \qquad K = 20$ Independent of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$ (c) $B(zI - A)^{-1} D + C$ (d) $D(zI - A)^{-1} B + C$ Ans. (a) $Transfer function = C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z' $\therefore \qquad Transfer function = C[(zI - A)^{-1} B] + D$		
type = 1 $R(s) = \frac{1}{s^{2}}$ $\Rightarrow \qquad \qquad$	Ans.	
$R(s) = \frac{1}{s^2}$ $\Rightarrow \qquad e_{ss} = \frac{1}{K_v} = \frac{2}{K} = 0.1$ $\therefore \qquad K = 20$ End of Solution 106. Transfer function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$ (c) $B(zI - A)^{-1} D + C$ (d) $D(zI - A)^{-1} B + C$ Ans. (a) Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z' $\therefore \qquad \text{Transfer function} = C[(zI - A)^{-1} B] + D$		$G(s) = \frac{1}{s(s+2)}$
$\Rightarrow \qquad e_{ss} = \frac{1}{K_{v}} = \frac{2}{K} = 0.1$ $\therefore \qquad K = 20$ $End \text{ of Solut}$ 106. Transfer function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$ (c) $B(zI - A)^{-1} D + C$ (d) $D(zI - A)^{-1} B + C$ Ans. (a) $Transfer function = C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z' $\therefore \qquad \text{Transfer function} = C[(zI - A)^{-1} B] + D$		
K = 20 End of Solut 106. Transfer function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$ (c) $B(zI - A)^{-1} D + C$ (d) $D(zI - A)^{-1} B + C$ Ans. (a) Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z' \therefore Transfer function = $C[(zI - A)^{-1} B] + D$		$R(s) = \frac{1}{s^2}$
K = 20 End of Solut 106. Transfer function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$ (c) $B(zI - A)^{-1} D + C$ (d) $D(zI - A)^{-1} B + C$ Ans. (a) Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z' \therefore Transfer function = $C[(zI - A)^{-1} B] + D$		$\Rightarrow e_{ss} = \frac{1}{t_s} = \frac{2}{t_s} = 0.1$
106. Transfer function of discrete time system derived from state model is given by (a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$ (c) $B(zI - A)^{-1} D + C$ (d) $D(zI - A)^{-1} B + C$ Ans. (a) Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z' \therefore Transfer function = $C[(zI - A)^{-1} B] + D$		
(a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$ (c) $B(zI - A)^{-1} D + C$ (d) $D(zI - A)^{-1} B + C$ Ans. (a) Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z' \therefore Transfer function = $C[(zI - A)^{-1} B] + D$		End of Solution
Transfer function = $C[(sI - A)^{-1} B] + D$ Replacing 's' with 'Z' \therefore Transfer function = $C[(zI - A)^{-1} B] + D$	106.	(a) $C(zI - A)^{-1} B + D$ (b) $C(zI - A)^{-1} D + B$
Replacing 's' with ' Z' \therefore Transfer function = $C[(zI - A)^{-1} B] + D$	Ans.	
$\therefore \text{Transfer function} = C[(zI - A)^{-1} B] + D$		
End of Solut		
		End of Solution
orporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🛛 info@madeeasy.in 💽 www.madeeasy.in 🛛 Pag		Office: 44-A/1, Kalu Sarai, New Delhi-110016 😡 info@madeeasy.in 🕢 www.madeeasy.in 💦 Page 4


	ndia's Best Institute for IES, GATE & PSUs Electrical Engineering Set-A
107.	The closed-loop response of a system subjected to a unit step input is
	$c(t) = 1 + 0.2 e^{-60t} - 1.2 e^{-10t}$ The expression for the closed-loop transfer function is
	(a) $\frac{100}{(s+60)(s+10)}$ (b) $\frac{600}{(s+60)(s+10)}$
	(a) (s+60)(s+10) (s+60)(s+10)
	(c) $\frac{60}{(s+60)(s+10)}$ (d) $\frac{10}{(s+60)(s+10)}$
Ans.	(b)
AII3.	SR = 1 + 0.2 e^{-60t} - 1.2 e^{-10t}
	$T.F. = s \times L\{SR\}$
	T.F. = $\frac{600}{(s+60)(s+10)}$
	End of Solution
108.	
108.	If it is possible to transfer the system state $x(t_0)$ to any desired state $x(t)$ in specifie finite time by a control vector $u(t)$, then the system is said to be
	(a) completely observable (b) completely state controllable
A	(c) random stage system (d) steady-state controlled system
Ans.	(b) A system is defined to be controllable (or) state controllable if it is possible to transform
	given state to desired state in finite time.
	End of Solution
109.	Consider the following statements regarding parallel connection of 3-phase transformers 1. The secondaries of all transformers must have the same phase sequence.
	 The secondaries of all transformers must have the same phase sequence. The phase displacement between primary and secondary line voltages must be th
	same for all transformers which are to be operated in parallel.3. The primaries of all transformers must have the same magnitude of line voltage
	Which of the above statements are correct?
	(a) 1, 2 and 3 (b) 1 and 3 only (c) 1 and 2 only (d) 2 and 3 only
Ans.	(a)
110.	(a) End of Solution
110.	A 500 kVA transformer has an efficiency of 95% at full load and also at 60% of full load
110.	both at upf. The efficiency η of the transformer at 3/4 th full load will be nearly
	(a) 98% (b) 95% (c) 92% (d) 87%
	Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 💽 www.madeeasy.in Page 4

	ndia's Best Institute for IES, GATE & PSUs Electrical Engineering	Set-A
Ans.	(b)	
/ 110.	500 kVA transformer, $\eta = 0.95$ at full load u.p.f.	
	η = 0.95 at 60% full load u.p.f.	
	η at full load, $0.95 = \frac{500}{500 + P_{cu} + P_i}$	
		(
	$\Rightarrow \qquad P_{cu} + P_i = 26.316$ η at 60% full load,	(i
	$0.95 = \frac{0.6 \times 500}{0.6 \times 500 + (0.6)^2 P_{cu} + P_i}$	
	0.36 $P_{cu} + P_i = 15.79$ By solving (i) and (ii),	(ii
	$P_{cu} = 16.45 \text{ kW}$	
	$P_i = 9.87 \text{ kW}$	
	Now η at 3/4 full load (assuming u.p.f.) (Not specified)	
	$\eta = \frac{0.75 \times 500 \times 1}{0.75 \times 500 \times 1 + 0.75^{2} (16.45) + 9.87} = \frac{375}{375 + 9.25 + 9.87} = \frac{375}{394.12} = 0$).95148
	End	d of Solutio
111.	What is the condition of retrogressive winding in dc machines?	
	(a) $Y_b > Y_f$ (b) $Y_b < Y_f$ (c) $Y_b = Y_f$ (d) $Y_b = 0.5Y_f$	
Ans.		
		d of Solutio
112.	What is the useful flux per pole on no load of a 250 V, 6 pole shunt moto	r having
	wave connected armature winding with 110 turns, armature resistance of	-
	armature current 13.3 A at no load speed of 908 rpm?	
	(a) 12.4 mWb (b) 22.6 mWb (c) 24.8 mW/b (c) 40.5 mW/b	
	(c) 24.8 mWb (d) 49.5 mWb	
Ans.	(c) 250 V, 6 pole, wave, 110 turns, $R_a = 0.2 \Omega$	
	$I_a = 13.3 \text{ A}, N = 908 \text{ rpm}, 220 \text{ conductors}$	
	$V = E_b + I_a R_a$	
	$E_b = 250 - 13.3(0.2) = 247.34 \text{ V}$	
	$E_b = \frac{\phi Z N P}{60 A} \Rightarrow \phi = \frac{E_b \times 60 \times A}{Z N P}$	
	-b 60 A ZNP	
	$\phi = \frac{247.34 \times 60 \times 2}{220 \times 908 \times 6} = 0.02476$ Webers	
	$420 \times 908 \times 6$ $\phi \simeq 24.8 \text{ mWb}$	
	la de la companya de	d of Solution
		-or-solution


ADE EASY	India's Best Institute for IES, GATE & PSUs Electrical Engineering Set-A
119.	 Which of the following are the advantages of using a stepper motor? (a) Compatibility with transformers and sensors needed for position sensing. (b) Compatibility with digital systems and sensors are not required for position and speed sensing. (c) Resonance effect often exhibited at low speeds and decreasing torque with increasing
	speed. (d) Easy to operate at high speeds and compatible with analog systems.
Ans.	(b) End of Solution
120.	 The disadvantages of hunting in synchronous machines is (a) fault occurs in the supply system. (b) causes sudden change in inertia. (c) causes large mechanical stresses and fatigue in the rotor shaft. (d) causes harmonics.
Ans.	(c) End of Solution
121.	 Consider the following statements for a large national interconnected grid: 1. Better load frequency control. 2. Same total installed capacity can meet lower demands. 3. Better hydro/thermal/nuclear/renewable co-ordination and energy conservation. Which of the above statements are correct? (a) 1 and 3 only (b) 1 and 2 only (c) 2 and 3 only (d) 1, 2 and 3
Ans.	
122.	End of SolutionA single-phase transformer is rated 110/440 V, 2.5 kVA. Leakage reactance measurefrom the low-tension side is 0.06 Ω . The per unit leakage reactance will be(a) 0.0062 per unit(b) 0.0124 per unit(c) 0.0496 per unit(d) 0.1983 per unit
Ans.	(b)
	$X_{\rm p.u.} = \frac{X_{\Omega}}{X_b} = X_{\Omega} \times \frac{S_b}{V_b^2}$
	$= \frac{0.06 \times 2.5 \times 10^3}{(110)^2} = 0.0124 \text{ p.u.}$
	End of Solution



127. The maximum permissible time of de-energization of the faulty circuit is dependent of (a) voltage of the system (b) the number of conductors involved (c) load carried by the faulty circuit (d) fault current and its duration Ans. (d) In fault analysis the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed to max permissible time of de-energization depends on the system voltage during fault is assumed to max permissible teakers? (a) Oit interrupter (b) Afficient of the fol		India's Best Institute for IES, GATE & PSUs ESE 2019 Preliminary Examination Electrical Engineering Set-A
127. The maximum permissible time of de-energization of the faulty circuit is dependent of (a) voltage of the system (b) the number of conductors involved (c) load carried by the faulty circuit (d) fault current and its duration Ans. (d) In fault analysis the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. Image: the system voltage during fault is assumed to max permissible time of de-energization depends on the system voltage during fault is assumed to max permissible teakers? (a) Oit interrupter (b) Afficient of the fol	Ans.	Sequence of fault currents.
(a) voltage of the system (b) the number of conductors involved (c) load carried by the faulty circuit (d) fault current and its duration Ans. (d) In fault analysis the system voltage during fault is assumed constant. The max permissible time of de-energization depends on fault current and its duration. End of Solutio 128. Which one of the following is used for communication with the aim of achieving hig figure of merit of HVDC circuit breakers? (a) Oil interrupter (b) Air interrupter (c) Vacuum interrupter (d) SF ₆ interrupter Ans. (c) Vacuum interrupter are used to achieve high figure of merit is HVDC breaker. End of Solutio 129. Which of the following buses are used to form bus admittance matrix for load flot analysis? 1. Load bus 2. Generator bus 3. Slack bus (a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3 Ans. (d) All buses load, gen, slack buses are used to form Y-bus matrix. End of Solutio 130. In a 3-phase, 60 Hz, 500 MVA, 15 kV, 32 pole hydroelectric generating unit, the value of ω_{syn} and ω_{moyn} will be nearly? (a) 754 rad/s and 47.6 rad/s (b) 377 rad/s and 46.7 rad/s (c) 377 rad/s and 47.6 rad/s (c) 754 rad/s and 23.6 rad/s Ans. (c) $\omega_e = 2\pi f = 2\pi \times 60 = 377$ rad/s and 23.6 rad/s Ans. (c) $\omega_e = 2\pi f = 2\pi \times 60 = 377$ rad/sec $\omega_m = \omega_e \propto \frac{2}{p} = 377 \times \frac{2}{32}$ = 23.6 rad/sec End of Solutio		End of Solution
In fault analysis the system voltage during fault is assumed constant. The max permissib time of de-energization depends on fault current and its duration. End of Solutio 128. Which one of the following is used for communication with the aim of achieving hig figure of merit of HVDC circuit breakers? (a) Oil interrupter (b) Air interrupter (c) Vacuum interrupter (d) SF ₆ interrupter Ans. (c) Vacuum interrupter are used to achieve high figure of merit is HVDC breaker. End of Solutio 129. Which of the following buses are used to form bus admittance matrix for load flor analysis? 1. Load bus 2. Generator bus 3. Slack bus (a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3 Ans. (d) All buses load, gen, slack buses are used to form Y-bus matrix. End of Solutio 130. In a 3-phase, 60 Hz, 500 MVA, 15 kV, 32 pole hydroelectric generating unit, the value of ω_{sym} and ω_{meyn} will be nearly? (a) 754 rad/s and 47.6 rad/s (b) 377 rad/s and 46.7 rad/s (c) 377 rad/s and 46.7 rad/s Ans. (c) $\omega_e = 2\pi f = 2\pi \times 60 = 377$ rad/s and 23.6 rad/s Ans. (c) $\omega_e = 2\pi f = 2\pi \times 60 = 377$ rad/sec $\omega_m = \omega_e \times \frac{2}{p} = 377 \times \frac{2}{32}$ = 23.6 rad/sec End of Solutio	127.	
128. Which one of the following is used for communication with the aim of achieving hig figure of merit of HVDC circuit breakers?(a) Oil interrupter(b) Air interrupter(c) Vacuum interrupter(d) SF _e interrupterAns. (c)Image: Communication with the following buses are used to achieve high figure of merit is HVDC breaker.129. Which of the following buses are used to form bus admittance matrix for load flo analysis?1. Load bus 2. Generator bus 3. Slack bus (a) 1 and 2 only(b) 1 and 3 only (c) 2 and 3 only(c) 2 and 3 only(d) All buses load, gen, slack buses are used to form Y-bus matrix.130. In a 3-phase, 60 Hz, 500 MVA, 15 kV, 32 pole hydroelectric generating unit, the value of ω_{syn} and ω_{msyn} will be nearly? (a) 754 rad/s and 47.6 rad/s (b) 377 rad/s and 46.7 rad/s (c) 377 rad/s and 23.6 rad/sAns. (c) $\omega_e = 2\pi f = 2\pi \times 60 = 377$ rad/sec $\omega_m = \omega_e \times \frac{2}{p} = 377 \times \frac{2}{32}$ $= 23.6$ rad/secEnd of Solution	Ans.	In fault analysis the system voltage during fault is assumed constant. The max permissible
figure of merit of HVDC circuit breakers? (a) Oil interrupter (b) Air interrupter (c) Vacuum interrupter (d) SF ₆ interrupter Ans. (c) Vacuum interrupter are used to achieve high figure of merit is HVDC breaker. <i>End of Solutio</i> 129. Which of the following buses are used to form bus admittance matrix for load fic analysis? 1. Load bus 2. Generator bus 3. Slack bus (a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3 Ans. (d) All buses load, gen, slack buses are used to form Y-bus matrix. 130. In a 3-phase, 60 Hz, 500 MVA, 15 kV, 32 pole hydroelectric generating unit, the value of ω_{syn} and ω_{msyn} will be nearly? (a) 754 rad/s and 47.6 rad/s (b) 377 rad/s and 46.7 rad/s (c) 377 rad/s and 23.6 rad/s Ans. (c) $\omega_e = 2\pi f = 2\pi \times 60 = 377$ rad/sec $\omega_m = \omega_e \times \frac{2}{p} = 377 \times \frac{2}{32}$ = 23.6 rad/sec <i>End of Solutio</i>		End of Solution
(c) Vacuum interrupter (d) SF ₆ interrupter Ans. (c) Vacuum interrupter are used to achieve high figure of merit is HVDC breaker. <i>End of Solutio</i> 129. Which of the following buses are used to form bus admittance matrix for load flor analysis? 1. Load bus 2. Generator bus 3. Slack bus (a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3 Ans. (d) All buses load, gen, slack buses are used to form Y-bus matrix. <i>End of Solutio</i> 130. In a 3-phase, 60 Hz, 500 MVA, 15 kV, 32 pole hydroelectric generating unit, the value of ω_{syn} and ω_{msyn} will be nearly? (a) 754 rad/s and 47.6 rad/s (b) 377 rad/s and 46.7 rad/s (c) 377 rad/s and 23.6 rad/s (d) 754 rad/s and 23.6 rad/s Ans. (c) $\omega_{e} = 2\pi f = 2\pi \times 60 = 377 \text{ rad/sec}$ $\omega_{m} = \omega_{e} \times \frac{2}{p} = 377 \times \frac{2}{32}$ = 23.6 rad/sec <i>End of Solutio</i>	128.	Which one of the following is used for communication with the aim of achieving high figure of merit of HVDC circuit breakers?
Vacuum interrupter are used to achieve high figure of merit is HVDC breaker. <i>End of Solutio</i> 129. Which of the following buses are used to form bus admittance matrix for load flot analysis? 1. Load bus 2. Generator bus 3. Slack bus (a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3 Ans. (d) All buses load, gen, slack buses are used to form Y-bus matrix. <i>End of Solutio</i> 130. In a 3-phase, 60 Hz, 500 MVA, 15 kV, 32 pole hydroelectric generating unit, the value of ω_{syn} and ω_{msyn} will be nearly? (a) 754 rad/s and 47.6 rad/s (b) 377 rad/s and 46.7 rad/s (c) 377 rad/s and 23.6 rad/s (d) 754 rad/s and 23.6 rad/s Ans. (c) $\omega_e = 2\pi f = 2\pi \times 60 = 377 \text{ rad/sec}$ $\omega_m = \omega_e \times \frac{2}{p} = 377 \times \frac{2}{32}$ = 23.6 rad/sec <i>End of Solutio</i>		
129. Which of the following buses are used to form bus admittance matrix for load flor analysis? 1. Load bus 2. Generator bus 3. Slack bus (a) 1 and 2 only (b) 1 and 3 only (c) 2 and 3 only (d) 1, 2 and 3 Ans. (d) All buses load, gen, slack buses are used to form Y-bus matrix. In a 3-phase, 60 Hz, 500 MVA, 15 kV, 32 pole hydroelectric generating unit, the value of ω_{syn} and ω_{msyn} will be nearly? (a) 754 rad/s and 47.6 rad/s (b) 377 rad/s and 46.7 rad/s (c) 377 rad/s and 23.6 rad/s (d) 754 rad/s and 23.6 rad/s Ans. (c) $\omega_e = 2\pi f = 2\pi \times 60 = 377$ rad/sec $\omega_m = \omega_e \times \frac{2}{p} = 377 \times \frac{2}{32}$ = 23.6 rad/sec End of Solutio	Ans.	Vacuum interrupter are used to achieve high figure of merit is HVDC breaker.
All buses load, gen, slack buses are used to form Y-bus matrix. 130. In a 3-phase, 60 Hz, 500 MVA, 15 kV, 32 pole hydroelectric generating unit, the value of ω_{syn} and ω_{msyn} will be nearly? (a) 754 rad/s and 47.6 rad/s (b) 377 rad/s and 46.7 rad/s (c) 377 rad/s and 23.6 rad/s (d) 754 rad/s and 23.6 rad/s Ans. (c) $\omega_e = 2\pi f = 2\pi \times 60 = 377 \text{ rad/sec}$ $\omega_m = \omega_e \times \frac{2}{P} = 377 \times \frac{2}{32}$ = 23.6 rad/sec <i>End of Solution</i>	129.	 Load bus Generator bus Slack bus (a) 1 and 2 only (b) 1 and 3 only
130. In a 3-phase, 60 Hz, 500 MVA, 15 kV, 32 pole hydroelectric generating unit, the value of ω_{syn} and ω_{msyn} will be nearly? (a) 754 rad/s and 47.6 rad/s (b) 377 rad/s and 46.7 rad/s (c) 377 rad/s and 23.6 rad/s (d) 754 rad/s and 23.6 rad/s Ans. (c) $\omega_e = 2\pi f = 2\pi \times 60 = 377 \text{ rad/sec}$ $\omega_m = \omega_e \times \frac{2}{P} = 377 \times \frac{2}{32}$ $= 23.6 \text{ rad/sec}$ <i>End of Solution</i>	Ans.	(d)
of ω_{syn} and ω_{msyn} will be nearly? (a) 754 rad/s and 47.6 rad/s (b) 377 rad/s and 46.7 rad/s (c) 377 rad/s and 23.6 rad/s (d) 754 rad/s and 23.6 rad/s Ans. (c) $\omega_e = 2\pi f = 2\pi \times 60 = 377 \text{ rad/sec}$ $\omega_m = \omega_e \times \frac{2}{P} = 377 \times \frac{2}{32}$ = 23.6 rad/sec <i>End of Solutio</i>		End of Solution
(a) 754 rad/s and 47.6 rad/s (b) 377 rad/s and 46.7 rad/s (c) 377 rad/s and 23.6 rad/s (d) 754 rad/s and 23.6 rad/s Ans. (c) $\omega_e = 2\pi f = 2\pi \times 60 = 377 \text{ rad/sec}$ $\omega_m = \omega_e \times \frac{2}{P} = 377 \times \frac{2}{32}$ = 23.6 rad/sec <i>End of Solutio</i>	130.	
$\omega_e = 2\pi f = 2\pi \times 60 = 377 \text{ rad/sec}$ $\omega_m = \omega_e \times \frac{2}{P} = 377 \times \frac{2}{32}$ $= 23.6 \text{ rad/sec}$ End of Solutio		(a) 754 rad/s and 47.6 rad/s (b) 377 rad/s and 46.7 rad/s
$\omega_m = \omega_e \times \frac{2}{P} = 377 \times \frac{2}{32}$ = 23.6 rad/sec End of Solutio	Ans.	
= 23.6 rad/sec		
End of Solutio		$\omega_m = \omega_e \times \frac{2}{P} = 377 \times \frac{2}{32}$
		= 23.6 rad/sec
orporate Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 🔗 www.madeeasy.in		End of Solution
	orporate	Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 👩 www.madeeasy.in Page 49

	India's Best Institute for IES, GATE & PSU:	Electrical Engineering Set-A			
131.	The method adopted for improving the steady-state stability of power system are1. Quick response excitation system2. Higher excitation voltages				
	3. Maximum power transfer by(a) 1 and 2 only(c) 2 and 3 only	use of series capacitor or reactor (b) 1 and 3 only (d) 1, 2 and 3			
Ans.	(c)	End of Solutio			
132.	(b) Inverter station at sending a(c) Rectifier station at sending	end and inverter station at receiving end.			
Ans.	(a) Rectifier station at sending end				
133.	Which one of the following is no (a) High speed operation (c) Small recovery time	<i>End of Solutio</i> ot required for power diode? (b) Fast communication (d) Low on-state voltage drop			
Ans.	(b) ₩	End of Solutio			
134.		iode is $t_{rr} = 3 \mu s$ and the rate of fall of the diode curre charge Q_{RR} and the peak inverse current I_{RR} will b			
	(a) 135 μC and 90 A (c) 270 μC and 60 A	(b) 270 μC and 90 A (d) 135 μC and 60 A			
Ans.	(a)	1/2			
	$t_{rr} = \left(\frac{2C}{di}\right)$	$\left(\frac{Q_R}{dt}\right)^{r/2}$			
	۷.	$\frac{d^2}{dt} \times \frac{di}{dt} = \frac{1}{2} (3 \times 10^{-6})^2 \times 30 \text{ A/} \mu \text{s}$			
	$Q_{R} = 135 \mu$ $I_{RM} = \left(2Q_{R}\right)$	$\left(\frac{di}{dt}\right)^{1/2} = (2 \times 137 \mu C \times 30 \text{ A/} \mu \text{ s})^{1/2}$			
	$I_{RM} = 90 \text{ A}$				
		End of Solutio			

	MADE EASY ndia's Best Institute for IES, GATE & PSUs	ESE 2019 Preliminary Examination Electrical Engineering Set-A	
139.	dc motors. 2. The ac motors are more exp	motors are 20% to 40% light weight as compared to pensive as compared to same kW rating dc motors. intenance as compared to dc motors.	
Ans.	(c)		
140.		End of Solution s a blower where load torque is directly proportional to erates at 1450 rpm, the maximum current in terms of (b) 3.4 (d) 6.8	
Ans.	(a)		
	$T_{\rm em} = \kappa I_2^2 \frac{R_2}{s}$		
		$(1-s)^2 \propto (1-s)^2$	
	$\frac{I_2^2 R_2}{s} \propto (1-s)^2$		
	$I_2 = \sqrt{s} (1-s)$ $I_1 \propto I_2 [\because \text{ No}$ $I_1 \propto \sqrt{s} (1-s)$	t considering stator impedance and no load current]	
	For slip at maximum current, d	$\frac{1}{ds} = 0$	
	$\Rightarrow \frac{d}{ds} \left[\sqrt{s} \left(1 - s \right) \right] = 0$		
		$(3/2) = \frac{1}{2}\sqrt{s} - \frac{3}{2}\sqrt{s} = 0$	
	$\frac{1}{2}\sqrt{s} = \frac{3}{2}\sqrt{s}$ Slip at maximum current,		
	$s = \frac{1}{3}$		
	$s = \frac{3}{1500 - 145}$	$\frac{50}{2} = 0.0333$	
	$\therefore \qquad \frac{I_{\max}}{I_{1fl}} = \frac{\sqrt{\frac{1}{3}} \left(1}{\sqrt{0.0333}}\right)$	$\frac{1-\frac{1}{3}}{1-0.0333)} = 2.2$	
		End of Solution	

141.	Consider the following statements:			
	 SMPS generates both the electromagnetic and radio frequency interference due t high switching frequency. 			
	2. SMPS has high ripple in output voltage			
	3. The output voltage of SMPS is less sensitive with respect to input voltage variatio Which of the above statements are correct?			
		2 and 3 only		
		1, 2 and 3		
Ans.	(a)			
AII5.	(a)	End of Solution		
140	Consider the following features with reapon			
142.	Consider the following features with respect to the flyback converters: 1. It is used mostly in application below 100 W.			
	 It is videly used for high-output voltage. 			
	3. It has low cost and is simple.			
	Which of the above statements are correct			
		1 and 2 only 2 and 3 only		
Ans.	(c)			
		End of Solution		
143.	Consider the following statements regarding the function of dc-dc converter in a dc moto 1. It acts as a regenerative brake.			
	2. It controls the speed of motor.			
	3. It controls the armature voltage of a do			
	Which of the above statements are correct			
		1 and 3 only 1, 2 and 3		
A n n		.,		
Ans.	(d)			
	The second conclusion which are used a density	End of Solution		
144.	The power supplies which are used extensively in industrial applications are require to meet:			
	1. Isolation between the source and the load.			
	2. High conversion efficiency.			
	3. Low power density for reduction of size	and weight.		
	 Controlled direction of power flow. Which of the above specification are correct 	×t?		
	·	1, 3 and 4 only		
		2, 3 and 4 only		
	(c)			
Ans.				
Ans.		End of Solution		

IADE EASY	Image: End System Est 2019 Preliminary Examination India's Best Institute for IES, GATE & PSUs Electrical Engineering Set-A		
145.	Statement-I: Soft iron does not retain magnetism permanently.		
	Statement-II: Soft iron has no retentivity.		
Ans.	(C) End of Solution		
146.	Statement-I: Reaction turbines are generally used for sites with high head and low flow. Statement-II: Kaplan and Francis turbines are reaction turbines.		
Ans.	(d) Reaction turbines are used for low head and high flow/velocity.		
	End of Solution		
147.	Statement-I: One can formulate problems more efficiently in a high level language and need not have a precise knowledge of the architecture of the computer. Statement-II: High level languages permit programmers to describe tasks in a form which is problem oriented than computer oriented.		
Ans.	(a) High level languages are machine independent whereas low level languages are machine dependent.		
	A H.L.L. programmer requires knowledge of logic implementation for the problem.		
	End of Solution		
148.	Statement-I: Sign magnitude representation is generally used in implementing the integer portion of the ALU.		
Ans.	Statement-II: In sign magnitude representation there are two representation of 0. (d)		
A110.	Statement-II is correct and statement-I is false.		
	End of Solution		
149.	Statement-I: When a non-linear resistor, in series with a linear resistor, both being non inductive, is connected to a voltage source, the current in the circuit cannot be determined by using Ohm's law.		
	Statement-II: If the current-voltage characteristic of the non-linear resistor is known, the current-voltage characteristics of the series circuit can be obtained by graphical solution		
Ans.	(b)		
	End of Solution		
150.	Statement-I: Soft magnetic materials, both metallic and ceramic are used for making transformers core, whereas, hard magnetic materials both metallic and ceramic are used for making permanent magnets.		
	Statement-II: Magnetic materials, both metallic and ceramic are classified as soft o hard according to the magnetic hysteresis loop being narrow or broad.		
Ans.	(a)		
	End of Solution		
	Office: 44-A/1, Kalu Sarai, New Delhi-110016 🖂 info@madeeasy.in 💽 www.madeeasy.in Page 5		